Home
Class 12
MATHS
Statement 1: For any three vectors veca,...

Statement 1: For any three vectors `veca,vecb,vecc`
`[(vecaxxvecb,vecbxxvecc,veccxxveca)]=0`
Statement 2: If `vecp,vecq,vecr` are linear dependent vectors then they are coplanar.

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
D

If `vecp,vecq,vecr` are linearly independent vectors, then there exist scalars `x,y,z` not all zero such that
`xvecp+yvecq+zvecr=vec0`
`impliesvecp=(-y/x)vecq+((-z)/x)vecr`
`impliesvecp,vecq,vecr` are coplanar.
So, statement 2 is true.
We know that `[(vecpxxvecb,vecbxxvecc,veccxxveca)]=[(veca,vecb,vecc)]!=0` unless `veca,vecb,vecc` are coplanar.
So, statement -2 is not true.
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Exercise|65 Videos
  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|64 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca equals

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

Prove that veca,vecb,vecc are coplanar iff vecaxxvecb,vecbxxvecc,veccxxveca are coplanar

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

For any three vectors veca, vecb, vecc the value of vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb) , is

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

Let veca, vecb and vec c be any three vectors; then prove that [[vecaxxvecb, vecbxxvecc, veccxxveca]] = [[veca, vecb, vecc]]^2

If [(vecaxxvecb, vecbxxvecc, veccxxveca)]=lamda[(veca, vecb, vecc)]^(2) , then lamda is equal to