Home
Class 12
MATHS
Let veca=hati+hatj-hatk, vecb=hati-hatj+...

Let `veca=hati+hatj-hatk, vecb=hati-hatj+hatk` and `vecc` be a unit vector perpendicular to `veca` and coplanar with `veca` and `vecb`, then it is given by

A

`1/(sqrt(6))(2hati-hatj+hatjk)`

B

`1/(sqrt(2))(hatj+hatk)`

C

`1/(sqrt(6))(hati-2hatj+hatk)`

D

`1/2(hatj-hatk)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a unit vector \( \vec{c} \) that is perpendicular to \( \vec{a} \) and coplanar with \( \vec{a} \) and \( \vec{b} \). Given: \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] Let \( \vec{c} = x \hat{i} + y \hat{j} + z \hat{k} \). ### Step 1: Condition for Coplanarity For the vectors \( \vec{a}, \vec{b}, \vec{c} \) to be coplanar, the scalar triple product must be zero: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \] This can be expressed as the determinant of the matrix formed by the components of the vectors: \[ \begin{vmatrix} 1 & 1 & -1 \\ 1 & -1 & 1 \\ x & y & z \end{vmatrix} = 0 \] ### Step 2: Calculate the Determinant Calculating the determinant: \[ = 1 \begin{vmatrix} -1 & 1 \\ y & z \end{vmatrix} - 1 \begin{vmatrix} 1 & 1 \\ x & z \end{vmatrix} - 1 \begin{vmatrix} 1 & -1 \\ x & y \end{vmatrix} \] Calculating each of these 2x2 determinants: \[ = 1((-1)z - 1y) - 1(1z - 1x) - 1(1y + 1x) \] \[ = -z - y - z + x - y - x \] \[ = -2z - 2y = 0 \] Thus, we have: \[ z + y = 0 \quad \text{(Equation 1)} \] ### Step 3: Condition for Perpendicularity Since \( \vec{c} \) is perpendicular to \( \vec{a} \): \[ \vec{a} \cdot \vec{c} = 0 \] This gives: \[ 1 \cdot x + 1 \cdot y - 1 \cdot z = 0 \] Substituting \( z = -y \) from Equation 1: \[ x + y + y = 0 \] \[ x + 2y = 0 \quad \text{(Equation 2)} \] ### Step 4: Unit Vector Condition Since \( \vec{c} \) is a unit vector: \[ \sqrt{x^2 + y^2 + z^2} = 1 \] Substituting \( z = -y \) and \( x = -2y \): \[ \sqrt{(-2y)^2 + y^2 + (-y)^2} = 1 \] \[ \sqrt{4y^2 + y^2 + y^2} = 1 \] \[ \sqrt{6y^2} = 1 \] \[ \sqrt{6} |y| = 1 \implies |y| = \frac{1}{\sqrt{6}} \] Thus, \( y = \frac{1}{\sqrt{6}} \) or \( y = -\frac{1}{\sqrt{6}} \). ### Step 5: Finding \( x \) and \( z \) Using \( y = \frac{1}{\sqrt{6}} \): \[ x = -2y = -2 \cdot \frac{1}{\sqrt{6}} = -\frac{2}{\sqrt{6}} \] \[ z = -y = -\frac{1}{\sqrt{6}} \] Thus, we have: \[ \vec{c} = -\frac{2}{\sqrt{6}} \hat{i} + \frac{1}{\sqrt{6}} \hat{j} - \frac{1}{\sqrt{6}} \hat{k} \] ### Final Result Factoring out \( \frac{1}{\sqrt{6}} \): \[ \vec{c} = \frac{1}{\sqrt{6}} \left(-2 \hat{i} + \hat{j} - \hat{k}\right) \]

To solve the problem, we need to find a unit vector \( \vec{c} \) that is perpendicular to \( \vec{a} \) and coplanar with \( \vec{a} \) and \( \vec{b} \). Given: \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. For non zero vectors veca,vecb, vecc |(vecaxxvecb).vec|=|veca||vecb|...

    Text Solution

    |

  2. Let veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc be a unit vector...

    Text Solution

    |

  3. If veca lies in the plane of vectors vecb and vecc, then which of the ...

    Text Solution

    |

  4. The value of [(veca-vecb, vecb-vecc, vecc-veca)], where |veca|=1, |vec...

    Text Solution

    |

  5. If veca, vecb, vecc are three non-coplanar mutually perpendicular unit...

    Text Solution

    |

  6. If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr, then...

    Text Solution

    |

  7. If the vectors vecr(1)=ahati+hatj+hatk, vecr(2)=hati+bhatj+hatk, vecr(...

    Text Solution

    |

  8. If hata, hatb, hatc are three units vectors such that hatb and hatc ar...

    Text Solution

    |

  9. For any three vectors veca, vecb, vecc the vector (vecbxxvecc)xxveca e...

    Text Solution

    |

  10. For any these vectors veca,vecb, vecc the expression (veca-vecb).{(vec...

    Text Solution

    |

  11. For any vectors vecr the value of hatixx(vecrxxhati)+hatjxx(vecrxxha...

    Text Solution

    |

  12. If the vectors veca=hati+ahatj+a^(2)hatk, vecb=hati+bhatj+b^(2)hatk, v...

    Text Solution

    |

  13. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  14. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  15. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  16. If the non zero vectors veca and vecb are perpendicular to each other,...

    Text Solution

    |

  17. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc](veca.ve...

    Text Solution

    |

  18. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

    Text Solution

    |

  19. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  20. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |