Home
Class 12
MATHS
Let veca=a(1)hati+a(2)hatj+a(3)hatk, vec...

Let `veca=a_(1)hati+a_(2)hatj+a_(3)hatk, vecb=b_(1)hati+b_(2)hatj+b_(3)hatk` and `vecc=c_(1)hati+c_(2)hatj+c_(3)hatk` be three non zero vectors such that `vecc` is a unit vector perpendicular to both `veca` and `vecb` . If the angle between `veca` and `vecb` is `(pi)/6`, then `|(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))|^(2)` is equal to

A

`0`

B

`1`

C

`1/4|veca|^(2)|vecb|^(2)`

D

`3/4|veca|^(2)|vecb|^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the square of the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Given the conditions in the problem, we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Given Vectors**: We have three vectors: \[ \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \] \[ \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} \] \[ \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \] where \(\vec{c}\) is a unit vector perpendicular to both \(\vec{a}\) and \(\vec{b}\). 2. **Using the Property of the Scalar Triple Product**: The scalar triple product can be expressed as: \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b}| |\vec{c}| \sin(\theta) \] where \(\theta\) is the angle between \(\vec{a}\) and \(\vec{b}\). Given that \(\theta = \frac{\pi}{6}\), we can express \(\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\). 3. **Magnitude of the Cross Product**: The magnitude of the cross product \(|\vec{b} \times \vec{c}|\) can be expressed as: \[ |\vec{b} \times \vec{c}| = |\vec{b}| |\vec{c}| \sin(\phi) \] where \(\phi\) is the angle between \(\vec{b}\) and \(\vec{c}\). Since \(\vec{c}\) is perpendicular to both \(\vec{a}\) and \(\vec{b}\), \(\phi = \frac{\pi}{2}\) and \(\sin\left(\frac{\pi}{2}\right) = 1\). 4. **Calculating the Scalar Triple Product**: The scalar triple product can also be expressed as: \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b}| |\vec{c}| \sin\left(\frac{\pi}{6}\right) \] Since \(|\vec{c}| = 1\) (as it is a unit vector), we have: \[ |\vec{a} \cdot (\vec{b} \times \vec{c})| = |\vec{a}| |\vec{b}| \cdot \frac{1}{2} \] 5. **Finding the Square of the Scalar Triple Product**: The square of the scalar triple product is: \[ |\vec{a} \cdot (\vec{b} \times \vec{c})|^2 = \left( |\vec{a}| |\vec{b}| \cdot \frac{1}{2} \right)^2 = \frac{1}{4} |\vec{a}|^2 |\vec{b}|^2 \] 6. **Final Expression**: Thus, the final expression for the square of the scalar triple product is: \[ |\vec{a}, \vec{b}, \vec{c}|^2 = \frac{1}{4} |\vec{a}|^2 |\vec{b}|^2 \] ### Conclusion: The value of \(|(\vec{a}, \vec{b}, \vec{c})|^2\) is equal to \(\frac{1}{4} |\vec{a}|^2 |\vec{b}|^2\).

To solve the problem, we need to find the square of the scalar triple product of the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Given the conditions in the problem, we can follow these steps: ### Step-by-Step Solution: 1. **Understanding the Given Vectors**: We have three vectors: \[ \vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

Let veca=a_(1)hati+a_(2)hatj+a_(3)hatk,vecb=b_(2)hatj+b_(3)hatk and vecc=c_(1)hati+c_(2)hatj+c_(3)hatk gve three non-zero vectors such that vecc is a unit vector perpendicular to both veca and vecb . If the angle between veca and vecb is pi/6 , then prove that |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|p=1/4 (a_(1)^(2)+a_(2)^(2)+a_(3)^(2))(b_(1)^(2)+b_(2)^(2)+b_(3)^(2))

Let overset(to)(a) =a_(1) hat(i) + a_(2) hat(j) + a_(3) hat(k) , overset(to)(a) = b_(1) hat(i) +b_(2) hat(j) +b_(3) hat(k) " and " overset(to)(a) = c_(1) hat(i) +c_(2) hat(j) + c_(3) hat(k) be three non- zero vectors such that overset(to)(c ) is a unit vectors perpendicular to both the vectors overset(to)(c ) and overset(to)(b) . If the angle between overset(to)(a) " and " overset(to)(n) is (pi)/(6) then |{:(a_(1),,a_(2),,a_(3)),(b_(1),,b_(2),,b_(3)),(c_(1),,c_(2),,c_(3)):}| is equal to

Let veca=a_1hati+a_2hatj+a_3hatk, vecb=b_1hati+b_2hatj+b_3hatk and vecc=c_1hati+c_2hatj+c_3hatk then show that vecaxx(vecb+vecc)=vecaxxb+vecaxxvecc

If veca=2hati+3hatj+6hatk and vecb=6hati+3hatj-2hatk , find the angle, between vectors veca and vecb . Also find unit vector perpendicular to both veca and vecb

Let veca = a_1hati + a_2hatj + a_3hatk, vecb = b_1hati + b_2hatj+ b_3hatk and vecc = c_1hati + c_2hatj + c_3hatk be three non zero vectors such that |vecc| =1 angle between veca and vecb is pi/4 and vecc is perpendicular to veca and vecb then |[a_1, b_1, c_1], [a_2, b_2, c_2], [a_3, b_3, c_3]|^2= lamda(a_1 ^2 +a_2 ^2 + a_3 ^2)(b_1 ^2 + b_2^2+b_3^2) where lamda is equal to (A) 1/2 (B) 1/4 (C) 1 (D) 2

Let veca =hati + hatj + sqrt2 hatk, vecb = b_(1) hati + b _(2) hatj + sqrt2 hatk and vecc = 5 hati + hatj + sqrt2 hatk be three vectors such that the projection vector of vecb on veca is veca. If veca + vecb perpendicular to vecc, then |vecb| is equal to

If veca=hati-2hatj+3hatk, vecb=2hati+3hatj-hatk and vecc=rhati+hatj+(2r-1)hatk are three vectors such that vecc is parallel to the plane of veca and vecb then r is equal to,

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr ...

    Text Solution

    |

  2. If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecbxxvecc))...

    Text Solution

    |

  3. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  4. If the non zero vectors veca and vecb are perpendicular to each other,...

    Text Solution

    |

  5. Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=pveca vecb vecc](veca.ve...

    Text Solution

    |

  6. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

    Text Solution

    |

  7. If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors,...

    Text Solution

    |

  8. vecaxx(vecaxx(vecaxxvecb)) equals

    Text Solution

    |

  9. If veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc is a unit vector ...

    Text Solution

    |

  10. If veca, vecb, vecc are non-coplanar unit vectors such that vecaxx(vec...

    Text Solution

    |

  11. Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj...

    Text Solution

    |

  12. If vecaxxvecb=vecc and vecbxxvecc=veca then a. veca,vecb,vecc are ort...

    Text Solution

    |

  13. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  14. If vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,veca!=0,vecb!=0,veca!=l...

    Text Solution

    |

  15. The vector veca coplanar with the vectors hati and hatj perendicular t...

    Text Solution

    |

  16. If the vectors veca and vecb are mutually perpendicular, then vecaxx{v...

    Text Solution

    |

  17. [((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx...

    Text Solution

    |

  18. Let veca=hati-hatj,vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit v...

    Text Solution

    |

  19. If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati...

    Text Solution

    |

  20. hata and hatb are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |