Home
Class 12
MATHS
Let a,b,c be distinct non-negative numbe...

Let `a,b,c` be distinct non-negative numbers. If the vectors `ahati+ahatj+chatk, hati+hatk` and `chati+chatj+bhatk` lies in a plane then `c` is

A

the AM of a and b

B

the GM of a and b

C

the HM of a and b

D

equal to zero

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( c \) given that the vectors \( \vec{A} = a \hat{i} + a \hat{j} + c \hat{k} \), \( \vec{B} = \hat{i} + \hat{k} \), and \( \vec{C} = c \hat{i} + c \hat{j} + b \hat{k} \) lie in the same plane. ### Step-by-step Solution: 1. **Understanding the Condition for Coplanarity**: Three vectors \( \vec{A}, \vec{B}, \vec{C} \) are coplanar if the scalar triple product is zero, which can be represented using the determinant of a matrix formed by these vectors. 2. **Forming the Matrix**: The vectors can be expressed in matrix form as follows: \[ \begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} \] 3. **Calculating the Determinant**: We will calculate the determinant of the above matrix. The determinant is given by: \[ D = a \begin{vmatrix} 0 & 1 \\ c & b \end{vmatrix} - a \begin{vmatrix} 1 & 1 \\ c & b \end{vmatrix} + c \begin{vmatrix} 1 & 0 \\ c & c \end{vmatrix} \] - The first determinant: \[ \begin{vmatrix} 0 & 1 \\ c & b \end{vmatrix} = 0 \cdot b - 1 \cdot c = -c \] - The second determinant: \[ \begin{vmatrix} 1 & 1 \\ c & b \end{vmatrix} = 1 \cdot b - 1 \cdot c = b - c \] - The third determinant: \[ \begin{vmatrix} 1 & 0 \\ c & c \end{vmatrix} = 1 \cdot c - 0 \cdot c = c \] Putting it all together: \[ D = a(-c) - a(b - c) + c(c) \] \[ D = -ac - ab + ac + c^2 \] \[ D = c^2 - ab \] 4. **Setting the Determinant to Zero**: For the vectors to be coplanar, we set the determinant to zero: \[ c^2 - ab = 0 \] 5. **Solving for \( c \)**: This implies: \[ c^2 = ab \] Taking the square root (since \( c \) is non-negative): \[ c = \sqrt{ab} \] ### Conclusion: Thus, the value of \( c \) is \( \sqrt{ab} \).

To solve the problem, we need to determine the value of \( c \) given that the vectors \( \vec{A} = a \hat{i} + a \hat{j} + c \hat{k} \), \( \vec{B} = \hat{i} + \hat{k} \), and \( \vec{C} = c \hat{i} + c \hat{j} + b \hat{k} \) lie in the same plane. ### Step-by-step Solution: 1. **Understanding the Condition for Coplanarity**: Three vectors \( \vec{A}, \vec{B}, \vec{C} \) are coplanar if the scalar triple product is zero, which can be represented using the determinant of a matrix formed by these vectors. 2. **Forming the Matrix**: ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If veca=hati+hatj-hatk, vecb=hati-hatj+hatk and vecc is a unit vector ...

    Text Solution

    |

  2. If veca, vecb, vecc are non-coplanar unit vectors such that vecaxx(vec...

    Text Solution

    |

  3. Let a,b,c be distinct non-negative numbers. If the vectors ahati+ahatj...

    Text Solution

    |

  4. If vecaxxvecb=vecc and vecbxxvecc=veca then a. veca,vecb,vecc are ort...

    Text Solution

    |

  5. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  6. If vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,veca!=0,vecb!=0,veca!=l...

    Text Solution

    |

  7. The vector veca coplanar with the vectors hati and hatj perendicular t...

    Text Solution

    |

  8. If the vectors veca and vecb are mutually perpendicular, then vecaxx{v...

    Text Solution

    |

  9. [((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx...

    Text Solution

    |

  10. Let veca=hati-hatj,vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit v...

    Text Solution

    |

  11. If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati...

    Text Solution

    |

  12. hata and hatb are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  13. If three concurrent edges of a parallelopiped of volume V represent ve...

    Text Solution

    |

  14. If veca=hati+hatj+hatk, vecb=hati+hatj,vecc=hati and (vecaxxvecb)xxvec...

    Text Solution

    |

  15. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  16. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  17. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  18. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  19. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  20. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |