Home
Class 12
MATHS
The vector veca coplanar with the vector...

The vector `veca` coplanar with the vectors `hati` and `hatj` perendicular to the vector `vecb=4hati-3hatj+5hatk` such that `|veca|=|vecb|` is

A

`sqrt(2)(3hati+4hatj)` or `-sqrt(2)(3hati+4hatj)`

B

`sqrt(2)(4hati+3hatj)` or `-sqrt(2)(4hati+3hatj)`

C

`sqrt(3)(4hati+5hatj)` ro `-sqrt(3)(4hati+5hatj)`

D

`sqrt(3)(5hati+4hatj)` or `-sqrt(3)(5hati+4hatj)`

Text Solution

Verified by Experts

The correct Answer is:
A

NA
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

The vector vecB=5hati+2hatj-Shatk is perpendicular to the vector vecA=3hati+hatj+2hatk if S=

The vector vecB= 5hati+2hatj-Shatk is perpendicular to the vector vecA= 3hati+hatj+2hatk if S =

The projection of the vector vecA = hat - 2hatj + hatk on the vector vecB = 4hati - 4hatj + 7hatk is

A vector of magnitude sqrt2 coplanar with the vectors veca=hati+hatj+2hatk and vecb = hati + hatj + hatk, and perpendicular to the vector vecc = hati + hatj +hatk is

Find the projection of vector veca=5hati-hatj-3hatk on the vector vecb=hati+hatj+hatk .

Find the projection of the vector veca=3hati+2hatj-4hatk on the vector vecb=hati+2hatj+hatk .

Determine a unit vector perpendicular to both the vectors vecA=2hati-3hatj+6hatk and vecB=hati-2hatj+4hatk

Find the projection oif veca=2hati+3hatj+2hatk on the vector vecb=hati+2hatj+hatk .

The unit vector parallel to the resultant of the vectors vecA=4hati+3hatj+5hatk and vecB=-hati+3hatj-8hatk is :

Find a vector perpendicular to vector vecA=(hati+2hatj-3hatk) as well as vecB=(hati+hatj-hatk)

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If vecp=(vecbxxvecc)/([(veca,vecb,vecc)]),vecq=(veccxxveca)/([(veca,ve...

    Text Solution

    |

  2. If vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,veca!=0,vecb!=0,veca!=l...

    Text Solution

    |

  3. The vector veca coplanar with the vectors hati and hatj perendicular t...

    Text Solution

    |

  4. If the vectors veca and vecb are mutually perpendicular, then vecaxx{v...

    Text Solution

    |

  5. [((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx...

    Text Solution

    |

  6. Let veca=hati-hatj,vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit v...

    Text Solution

    |

  7. If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati...

    Text Solution

    |

  8. hata and hatb are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  9. If three concurrent edges of a parallelopiped of volume V represent ve...

    Text Solution

    |

  10. If veca=hati+hatj+hatk, vecb=hati+hatj,vecc=hati and (vecaxxvecb)xxvec...

    Text Solution

    |

  11. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  12. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  13. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  14. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  15. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  16. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  17. When a right handed rectangular Cartesian system OXYZ rotated about z-...

    Text Solution

    |

  18. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  19. If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, and [(veca,v...

    Text Solution

    |

  20. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |