Home
Class 12
MATHS
If the vectors veca and vecb are mutuall...

If the vectors `veca` and `vecb` are mutually perpendicular, then `vecaxx{vecaxx{vecaxx(vecaxxvecb)}}` is equal to

A

`|veca|^(2)vecb`

B

`|veca|^(3)vecb`

C

`|veca|^(4)vecb`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \vec{A} \times (\vec{A} \times (\vec{A} \times \vec{B})) \) given that the vectors \( \vec{A} \) and \( \vec{B} \) are mutually perpendicular. ### Step-by-Step Solution: 1. **Understand the Given Information:** Since \( \vec{A} \) and \( \vec{B} \) are mutually perpendicular, we have: \[ \vec{A} \cdot \vec{B} = 0 \] 2. **Use the Vector Triple Product Identity:** We will use the vector triple product identity: \[ \vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C}) \vec{B} - (\vec{A} \cdot \vec{B}) \vec{C} \] In our case, we can apply this identity to simplify \( \vec{A} \times (\vec{A} \times \vec{B}) \). 3. **Calculate \( \vec{A} \times (\vec{A} \times \vec{B}) \):** Let \( \vec{C} = \vec{B} \). Then: \[ \vec{A} \times (\vec{A} \times \vec{B}) = (\vec{A} \cdot \vec{B}) \vec{A} - (\vec{A} \cdot \vec{A}) \vec{B} \] Since \( \vec{A} \cdot \vec{B} = 0 \): \[ \vec{A} \times (\vec{A} \times \vec{B}) = 0 \cdot \vec{A} - (\vec{A} \cdot \vec{A}) \vec{B} = -|\vec{A}|^2 \vec{B} \] 4. **Substitute Back into the Original Expression:** Now we need to find \( \vec{A} \times (-|\vec{A}|^2 \vec{B}) \): \[ \vec{A} \times (-|\vec{A}|^2 \vec{B}) = -|\vec{A}|^2 (\vec{A} \times \vec{B}) \] 5. **Final Result:** Since \( \vec{A} \) and \( \vec{B} \) are perpendicular, \( \vec{A} \times \vec{B} \) is a vector perpendicular to both \( \vec{A} \) and \( \vec{B} \). Thus, we can conclude: \[ \vec{A} \times (\vec{A} \times (\vec{A} \times \vec{B})) = -|\vec{A}|^2 (\vec{A} \times \vec{B}) \] ### Conclusion: The final expression for \( \vec{A} \times (\vec{A} \times (\vec{A} \times \vec{B})) \) is: \[ -|\vec{A}|^2 (\vec{A} \times \vec{B}) \]

To solve the problem, we need to find the value of \( \vec{A} \times (\vec{A} \times (\vec{A} \times \vec{B})) \) given that the vectors \( \vec{A} \) and \( \vec{B} \) are mutually perpendicular. ### Step-by-Step Solution: 1. **Understand the Given Information:** Since \( \vec{A} \) and \( \vec{B} \) are mutually perpendicular, we have: \[ \vec{A} \cdot \vec{B} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If the vectors veca and vecb are mutually perpendicular, then veca xx {veca xx {veca xx {veca xx vecb}} is equal to:

vecaxx(vecaxx(vecaxxvecb)) equals

If |veca|=2 and |vecb|=3 and veca.vecb=0, " then " (vecaxx(vecaxx(vecaxx(vecaxxvecb)))) is equal

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) then

If vecb is a unit vector, then (veca. vecb)vecb+vecbxx(vecaxxvecb) is a equal to

If veca, vecb are non zero vectors, then ((vecaxxvecb)xxveca).((vecbxxveca)xxvecb) equals

If |veca|=2, |vecb|=5 and veca*vecb=0 , then veca xx (vecaxx(vecaxx(vecaxx(vecaxx(veca xx vecb))))) is equal to :

Vectors 3veca-5vecb and 2veca + vecb are mutually perpendicular. If veca + 4 vecb and vecb - veca are also mutually perpendicular, then the cosine of the angle between veca nad vecb is

If veca is perpendicular to vecb then the vector vecaxx[vecaxx{vecaxx(vecaxxvecb)}] is equla (A) |veca|^2vecb (B) |veca|vecb (C) |veca|^3vecb (D) |veca|^4vecb

If veca,vecb and vecc are coplaner, then what is (2vecaxx3vecb).4vecc+(5vecbxx3vecc).6veca equal to?

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If vecrxxveca=vecbxxveca,vecrxxvecb=vecaxxvecb,veca!=0,vecb!=0,veca!=l...

    Text Solution

    |

  2. The vector veca coplanar with the vectors hati and hatj perendicular t...

    Text Solution

    |

  3. If the vectors veca and vecb are mutually perpendicular, then vecaxx{v...

    Text Solution

    |

  4. [((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx...

    Text Solution

    |

  5. Let veca=hati-hatj,vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit v...

    Text Solution

    |

  6. If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati...

    Text Solution

    |

  7. hata and hatb are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  8. If three concurrent edges of a parallelopiped of volume V represent ve...

    Text Solution

    |

  9. If veca=hati+hatj+hatk, vecb=hati+hatj,vecc=hati and (vecaxxvecb)xxvec...

    Text Solution

    |

  10. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  11. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  12. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  13. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  14. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  15. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  16. When a right handed rectangular Cartesian system OXYZ rotated about z-...

    Text Solution

    |

  17. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  18. If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, and [(veca,v...

    Text Solution

    |

  19. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  20. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |