Home
Class 12
MATHS
[((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc...

`[((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx(vecaxxvecb))]` equal to

A

`[(veca,vecb,vecc)]^(2)`

B

`[(veca,vecb,vecc)]^(3)`

C

`[(veca,vecb,vecc)]^(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given, which involves the scalar triple products of three vectors. The expression is: \[ \left[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}), (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) \right] \] We will evaluate each term step-by-step using the vector triple product identity. ### Step 1: Evaluate \((\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})\) Using the vector triple product identity: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \(\vec{x} = \vec{a} \times \vec{b}\), \(\vec{y} = \vec{b}\), and \(\vec{z} = \vec{c}\). Thus, \[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \left((\vec{a} \times \vec{b}) \cdot \vec{c}\right) \vec{b} - \left((\vec{a} \times \vec{b}) \cdot \vec{b}\right) \vec{c} \] Since \((\vec{a} \times \vec{b}) \cdot \vec{b} = 0\) (the dot product of a vector with itself is zero), we have: \[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}) = \left((\vec{a} \times \vec{b}) \cdot \vec{c}\right) \vec{b} \] ### Step 2: Evaluate \((\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})\) Using the same identity: Let \(\vec{x} = \vec{b} \times \vec{c}\), \(\vec{y} = \vec{c}\), and \(\vec{z} = \vec{a}\). Thus, \[ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = \left((\vec{b} \times \vec{c}) \cdot \vec{a}\right) \vec{c} - \left((\vec{b} \times \vec{c}) \cdot \vec{c}\right) \vec{a} \] Again, \((\vec{b} \times \vec{c}) \cdot \vec{c} = 0\), so we have: \[ (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}) = \left((\vec{b} \times \vec{c}) \cdot \vec{a}\right) \vec{c} \] ### Step 3: Evaluate \((\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})\) Using the identity again: Let \(\vec{x} = \vec{c} \times \vec{a}\), \(\vec{y} = \vec{a}\), and \(\vec{z} = \vec{b}\). Thus, \[ (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) = \left((\vec{c} \times \vec{a}) \cdot \vec{b}\right) \vec{a} - \left((\vec{c} \times \vec{a}) \cdot \vec{a}\right) \vec{b} \] Again, \((\vec{c} \times \vec{a}) \cdot \vec{a} = 0\), so we have: \[ (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) = \left((\vec{c} \times \vec{a}) \cdot \vec{b}\right) \vec{a} \] ### Final Expression Now, we can combine the results from all three steps: \[ \left[ \left((\vec{a} \times \vec{b}) \cdot \vec{c}\right) \vec{b}, \left((\vec{b} \times \vec{c}) \cdot \vec{a}\right) \vec{c}, \left((\vec{c} \times \vec{a}) \cdot \vec{b}\right) \vec{a} \right] \] ### Conclusion The final result is a vector whose components depend on the scalar triple products of the vectors involved.

To solve the problem, we need to evaluate the expression given, which involves the scalar triple products of three vectors. The expression is: \[ \left[ (\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c}), (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a}), (\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b}) \right] \] We will evaluate each term step-by-step using the vector triple product identity. ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+veccxxveca)xx(vecxxvecb) is equal to

If veca, vecb, vecc are three non colanar, non =null vectors, and vecr is any vector in space, then (vecaxxvecb)xx(vecrxxvecc)+(vecbxxvecc)xx(vecrxxveca)+(veccxxveca)xx(vecrxxvecb) is equal to

[(veca xxvecb)xx(vecb xx vecc) (vecb xxvecc) xx (vecc xxveca) (veccxxveca) xx (veca xx vecb)] is equal to ( where veca, vecb and vecc are non - zero non- colanar vectors).

vec(a)xx[vec(a)xx(vecaxxvecb)] is equal to

Let veca=hati+hatj+hatk,vecb=hati+4hatj-hatk and vec c =hati+hatj+2hatk . If vecS be a unit vector, then the magnitude of the vector (veca.vecS)(vecbxxvecc)+(vecb.vecS)(veccxxveca)+(vecc.vecS)(vecaxxvecb) is equal to

If [vecbvecc vecd]=24 and (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)+kveca=0 then k is equal to …………….

If veca, vecb, vecc are three non-coplanar vetors represented by non-current edges of a parallelopiped of volume 4 units, then the value of (veca+vecb).(vecbxxvecc)+(vecb+vecc).(veccxxveca)+(vecc+veca).(vecaxxvecb) , is

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)=2[vecb vecc vecd] veca

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. The vector veca coplanar with the vectors hati and hatj perendicular t...

    Text Solution

    |

  2. If the vectors veca and vecb are mutually perpendicular, then vecaxx{v...

    Text Solution

    |

  3. [((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx...

    Text Solution

    |

  4. Let veca=hati-hatj,vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit v...

    Text Solution

    |

  5. If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati...

    Text Solution

    |

  6. hata and hatb are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  7. If three concurrent edges of a parallelopiped of volume V represent ve...

    Text Solution

    |

  8. If veca=hati+hatj+hatk, vecb=hati+hatj,vecc=hati and (vecaxxvecb)xxvec...

    Text Solution

    |

  9. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  10. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  11. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  12. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  13. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  14. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  15. When a right handed rectangular Cartesian system OXYZ rotated about z-...

    Text Solution

    |

  16. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  17. If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, and [(veca,v...

    Text Solution

    |

  18. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  19. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  20. If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |