Home
Class 12
MATHS
Let veca=hati-hatj,vecb=hatj-hatk, vecc=...

Let `veca=hati-hatj,vecb=hatj-hatk, vecc=hatk-hati`. If `hatd` is a unit vector such that `veca.hatd=0=[(vecb ,vecc, hatd)]`, then `hatd` equals

A

`+-(hati+hatj-2hatk)/(sqrt(6))`

B

`+-(hati+hatj-hatk)/(sqrt(3))`

C

`+-(hati+hatj+hatk)/(sqrt(3))`

D

`+-hatk`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector \(\hat{d}\) such that \(\vec{a} \cdot \hat{d} = 0\) and \([\vec{b}, \vec{c}, \hat{d}] = 0\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} - \hat{j}, \quad \vec{b} = \hat{j} - \hat{k}, \quad \vec{c} = \hat{k} - \hat{i} \] ### Step 2: Express \(\hat{d}\) as a general unit vector Let: \[ \hat{d} = x \hat{i} + y \hat{j} + z \hat{k} \] Since \(\hat{d}\) is a unit vector, we have: \[ x^2 + y^2 + z^2 = 1 \quad \text{(Equation 1)} \] ### Step 3: Use the dot product condition The condition \(\vec{a} \cdot \hat{d} = 0\) gives: \[ (\hat{i} - \hat{j}) \cdot (x \hat{i} + y \hat{j} + z \hat{k}) = 0 \] Calculating the dot product: \[ x - y = 0 \implies x = y \quad \text{(Equation 2)} \] ### Step 4: Use the scalar triple product condition The condition \([\vec{b}, \vec{c}, \hat{d}] = 0\) implies that the vectors \(\vec{b}\), \(\vec{c}\), and \(\hat{d}\) are coplanar. This can be represented using the determinant: \[ \begin{vmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ x & y & z \end{vmatrix} = 0 \] Calculating the determinant: \[ 0 \cdot (0 \cdot z - 1 \cdot y) - 1 \cdot (-1 \cdot z - 1 \cdot x) + (-1) \cdot (0 \cdot y - (-1) \cdot x) = 0 \] This simplifies to: \[ -z - x + x = 0 \implies -z = 0 \implies z = 0 \quad \text{(Equation 3)} \] ### Step 5: Substitute \(z\) into Equation 1 Substituting \(z = 0\) into Equation 1: \[ x^2 + y^2 + 0^2 = 1 \implies x^2 + y^2 = 1 \] Using Equation 2, where \(x = y\): \[ x^2 + x^2 = 1 \implies 2x^2 = 1 \implies x^2 = \frac{1}{2} \implies x = \pm \frac{1}{\sqrt{2}} \] Thus, \(y = \pm \frac{1}{\sqrt{2}}\). ### Step 6: Determine \(\hat{d}\) Since \(z = 0\), we have: \[ \hat{d} = x \hat{i} + y \hat{j} + 0 \hat{k} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} \quad \text{or} \quad \hat{d} = -\frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{j} \] Thus, the possible unit vectors are: \[ \hat{d} = \frac{1}{\sqrt{2}} (\hat{i} + \hat{j}) \quad \text{or} \quad \hat{d} = -\frac{1}{\sqrt{2}} (\hat{i} + \hat{j}) \] ### Final Answer The unit vector \(\hat{d}\) can be expressed as: \[ \hat{d} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} \] or \[ \hat{d} = -\frac{1}{\sqrt{2}} \hat{i} - \frac{1}{\sqrt{2}} \hat{j} \]

To find the unit vector \(\hat{d}\) such that \(\vec{a} \cdot \hat{d} = 0\) and \([\vec{b}, \vec{c}, \hat{d}] = 0\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{a} = \hat{i} - \hat{j}, \quad \vec{b} = \hat{j} - \hat{k}, \quad \vec{c} = \hat{k} - \hat{i} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos
OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If the vectors veca and vecb are mutually perpendicular, then vecaxx{v...

    Text Solution

    |

  2. [((vecaxxvecb)xx(vecbxxvecc),(vecbxxvecc)xx(veccxxveca),(veccxxveca)xx...

    Text Solution

    |

  3. Let veca=hati-hatj,vecb=hatj-hatk, vecc=hatk-hati. If hatd is a unit v...

    Text Solution

    |

  4. If the vectors (sec^(2)A)hati+hatj+hatk, hati+(sec^(2)B)hatj+hatk,hati...

    Text Solution

    |

  5. hata and hatb are two mutually perpendicular unit vectors. If the vect...

    Text Solution

    |

  6. If three concurrent edges of a parallelopiped of volume V represent ve...

    Text Solution

    |

  7. If veca=hati+hatj+hatk, vecb=hati+hatj,vecc=hati and (vecaxxvecb)xxvec...

    Text Solution

    |

  8. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  9. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  10. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  11. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  12. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  13. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  14. When a right handed rectangular Cartesian system OXYZ rotated about z-...

    Text Solution

    |

  15. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  16. If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, and [(veca,v...

    Text Solution

    |

  17. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  18. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  19. If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  20. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |