Home
Class 12
MATHS
If veca=2hati-3hatj+5hatk , vecb=3hati-4...

If `veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk` and `vecc=5hati-3hatj-2hatk`, then the volume of the parallelopiped with coterminous edges `veca+vecb,vecb+vecc,vecc+veca` is

A

2

B

1

C

-1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the vectors \(\vec{a} + \vec{b}\), \(\vec{b} + \vec{c}\), and \(\vec{c} + \vec{a}\), we can use the scalar triple product, which is given by the determinant of a matrix formed by these vectors. ### Step 1: Calculate the vectors \(\vec{a} + \vec{b}\), \(\vec{b} + \vec{c}\), and \(\vec{c} + \vec{a}\) Given: \[ \vec{a} = 2\hat{i} - 3\hat{j} + 5\hat{k} \] \[ \vec{b} = 3\hat{i} - 4\hat{j} + 5\hat{k} \] \[ \vec{c} = 5\hat{i} - 3\hat{j} - 2\hat{k} \] Now, we calculate: 1. \(\vec{a} + \vec{b}\): \[ \vec{a} + \vec{b} = (2 + 3)\hat{i} + (-3 - 4)\hat{j} + (5 + 5)\hat{k} = 5\hat{i} - 7\hat{j} + 10\hat{k} \] 2. \(\vec{b} + \vec{c}\): \[ \vec{b} + \vec{c} = (3 + 5)\hat{i} + (-4 - 3)\hat{j} + (5 - 2)\hat{k} = 8\hat{i} - 7\hat{j} + 3\hat{k} \] 3. \(\vec{c} + \vec{a}\): \[ \vec{c} + \vec{a} = (5 + 2)\hat{i} + (-3 - 3)\hat{j} + (-2 + 5)\hat{k} = 7\hat{i} - 6\hat{j} + 3\hat{k} \] ### Step 2: Set up the determinant The volume \(V\) of the parallelepiped is given by the absolute value of the scalar triple product: \[ V = |\vec{u} \cdot (\vec{v} \times \vec{w})| \] where \(\vec{u} = \vec{a} + \vec{b}\), \(\vec{v} = \vec{b} + \vec{c}\), and \(\vec{w} = \vec{c} + \vec{a}\). This can be calculated using the determinant: \[ V = \left| \begin{vmatrix} 5 & -7 & 10 \\ 8 & -7 & 3 \\ 7 & -6 & 3 \end{vmatrix} \right| \] ### Step 3: Calculate the determinant We will calculate the determinant using cofactor expansion along the first row: \[ \begin{vmatrix} 5 & -7 & 10 \\ 8 & -7 & 3 \\ 7 & -6 & 3 \end{vmatrix} = 5 \begin{vmatrix} -7 & 3 \\ -6 & 3 \end{vmatrix} - (-7) \begin{vmatrix} 8 & 3 \\ 7 & 3 \end{vmatrix} + 10 \begin{vmatrix} 8 & -7 \\ 7 & -6 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \(\begin{vmatrix} -7 & 3 \\ -6 & 3 \end{vmatrix} = (-7)(3) - (-6)(3) = -21 + 18 = -3\) 2. \(\begin{vmatrix} 8 & 3 \\ 7 & 3 \end{vmatrix} = (8)(3) - (7)(3) = 24 - 21 = 3\) 3. \(\begin{vmatrix} 8 & -7 \\ 7 & -6 \end{vmatrix} = (8)(-6) - (7)(-7) = -48 + 49 = 1\) Substituting back into the determinant: \[ = 5(-3) + 7(3) + 10(1) = -15 + 21 + 10 = 16 \] ### Step 4: Find the volume Thus, the volume of the parallelepiped is: \[ V = |16| = 16 \] ### Final Answer: The volume of the parallelepiped is \(16\). ---

To find the volume of the parallelepiped formed by the vectors \(\vec{a} + \vec{b}\), \(\vec{b} + \vec{c}\), and \(\vec{c} + \vec{a}\), we can use the scalar triple product, which is given by the determinant of a matrix formed by these vectors. ### Step 1: Calculate the vectors \(\vec{a} + \vec{b}\), \(\vec{b} + \vec{c}\), and \(\vec{c} + \vec{a}\) Given: \[ \vec{a} = 2\hat{i} - 3\hat{j} + 5\hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

If vecA=3hati+hatj+2hatk and vecB=2hati-2hatj+4hatk , then value of |vecA+vecB| will be

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca,' = hati + hatj, vecb'= hati - hatj + 2hatk nad vecc' = 2hati = hatj - hatk then the altitude of the parallelepiped formed by the vectors, veca, vecb and vecc having baswe formed by vecb and vecc is ( where veca' is recipocal vector veca, , etc.

If vecA=9hati-7hatj+5hatk and vecB=3hati-2hatj-6hatk then the value of (vecA+vecB).(vecA-vecB) is

If veca=hati+hatj+hatk, vecb=2hati-hatj+3hatk and vecc=hati-2hatj+hatk find a unit vector parallel to ther vector 2veca-vecb+3cevc .

The three vectors vecA=3hati-2hatj+hatk, vecB=hati-3hatj+5hatk and vecC=2hati+hatj-4hatk form

If veca = 2 hati - 3hatj, vecb = hati + hatj -hatk, vecc = 3hati - hatk, find [a vecb vecc]

If veca=7hati+3hatj-6hatk , vecb=2hati+5hatj-hatk and vecc=-hati+2hatj+4hatk . Find (veca-vecb)xx(vecc-vecb) .

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. If three concurrent edges of a parallelopiped of volume V represent ve...

    Text Solution

    |

  2. If veca=hati+hatj+hatk, vecb=hati+hatj,vecc=hati and (vecaxxvecb)xxvec...

    Text Solution

    |

  3. If veca=2hati-3hatj+5hatk , vecb=3hati-4hatj+5hatk and vecc=5hati-3hat...

    Text Solution

    |

  4. If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)...

    Text Solution

    |

  5. If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[...

    Text Solution

    |

  6. If [(2veca+4vecb,vecc,vecd)]=lamda[(veca,vecc,vecd)]+mu[(vecb,vecc,vec...

    Text Solution

    |

  7. If the volume of the tetrahedron whose vertices are (1,-6,10),(-1,-3,7...

    Text Solution

    |

  8. (vecbxxvecc)xx(veccxxveca)=

    Text Solution

    |

  9. When a right handed rectangular Cartesian system OXYZ rotated about z-...

    Text Solution

    |

  10. Prove that vectors vecu=(al+a(1)l(1))hati+(am+a(1)m(1))hatj + (an+a(...

    Text Solution

    |

  11. If vecax(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0, and [(veca,v...

    Text Solution

    |

  12. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  13. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  14. If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  15. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  16. If V is the volume of the parallelopiped having three coterminous edge...

    Text Solution

    |

  17. The unit vector veca and vecb are perpendicular, and the unit vector v...

    Text Solution

    |

  18. If the vector vec(AB)=-3hati+4hatk and vec(AC)=5hati-lamdahatj+4hatk ...

    Text Solution

    |

  19. Let veca and vecb be two mutually perpendicular unit vectors and vecc ...

    Text Solution

    |

  20. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |