Home
Class 12
MATHS
If veca,vecb and vecc are unit coplanar ...

If `veca,vecb` and `vecc` are unit coplanar vectors, then
`[(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)]` is equal to

A

0

B

`1//2`

C

`24`

D

`32`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the scalar triple product of the vectors \( (2\vec{a} - 3\vec{b}, 7\vec{b} - 9\vec{c}, 12\vec{c} - 23\vec{b}) \). ### Step-by-step Solution: 1. **Identify the Vectors**: Let: \[ \vec{u} = 2\vec{a} - 3\vec{b} \] \[ \vec{v} = 7\vec{b} - 9\vec{c} \] \[ \vec{w} = 12\vec{c} - 23\vec{b} \] 2. **Set Up the Scalar Triple Product**: We need to compute the scalar triple product \( [\vec{u}, \vec{v}, \vec{w}] \), which can be expressed as: \[ [\vec{u}, \vec{v}, \vec{w}] = \vec{u} \cdot (\vec{v} \times \vec{w}) \] 3. **Calculate the Cross Product \( \vec{v} \times \vec{w} \)**: Using the distributive property of the cross product: \[ \vec{v} \times \vec{w} = (7\vec{b} - 9\vec{c}) \times (12\vec{c} - 23\vec{b}) \] Expanding this: \[ = 7\vec{b} \times 12\vec{c} - 7\vec{b} \times 23\vec{b} - 9\vec{c} \times 12\vec{c} + 9\vec{c} \times 23\vec{b} \] Since the cross product of any vector with itself is zero: \[ \vec{b} \times \vec{b} = 0 \quad \text{and} \quad \vec{c} \times \vec{c} = 0 \] Therefore, we simplify to: \[ = 84(\vec{b} \times \vec{c}) + 207(\vec{c} \times \vec{b}) \] Since \( \vec{c} \times \vec{b} = -(\vec{b} \times \vec{c}) \): \[ = 84(\vec{b} \times \vec{c}) - 207(\vec{b} \times \vec{c}) = (84 - 207)(\vec{b} \times \vec{c}) = -123(\vec{b} \times \vec{c}) \] 4. **Calculate the Dot Product \( \vec{u} \cdot (\vec{v} \times \vec{w}) \)**: Now we compute: \[ \vec{u} \cdot (-123(\vec{b} \times \vec{c})) = -123(\vec{u} \cdot (\vec{b} \times \vec{c})) \] Substitute \( \vec{u} = 2\vec{a} - 3\vec{b} \): \[ = -123((2\vec{a} - 3\vec{b}) \cdot (\vec{b} \times \vec{c})) \] Using the property of scalar triple products: \[ \vec{u} \cdot (\vec{b} \times \vec{c}) = [\vec{a}, \vec{b}, \vec{c}] \] Since \( \vec{a}, \vec{b}, \vec{c} \) are coplanar, we have: \[ [\vec{a}, \vec{b}, \vec{c}] = 0 \] 5. **Final Result**: Therefore, the scalar triple product evaluates to: \[ -123 \cdot 0 = 0 \] ### Conclusion: The value of the scalar triple product \( [(2\vec{a} - 3\vec{b}, 7\vec{b} - 9\vec{c}, 12\vec{c} - 23\vec{b})] \) is **0**.

To solve the problem, we need to evaluate the scalar triple product of the vectors \( (2\vec{a} - 3\vec{b}, 7\vec{b} - 9\vec{c}, 12\vec{c} - 23\vec{b}) \). ### Step-by-step Solution: 1. **Identify the Vectors**: Let: \[ \vec{u} = 2\vec{a} - 3\vec{b} ...
Promotional Banner

Topper's Solved these Questions

  • SCALAR AND VECTOR PRODUCTS OF THREE VECTORS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|12 Videos
  • REAL FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos
  • SCALER AND VECTOR PRODUCTS OF TWO VECTORS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|12 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product [(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc 1 are three non-coplanar vectors, then (veca + vecb + vecc). [(veca + vecb) xx (veca + vecc)] equals

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

If veca, vecb and vecc are non-coplanar vectors, prove that the four points 2veca+3vecb-vecc, veca-2vecb+3vecc, 3veca+4vecb-2vecc and veca-6vecb+ 6 vecc are coplanar.

If [(veca+2vecb+3vecc)xx(vecb+2vecc+3veca)],.(vecc+2veca+3vecb)]=54 where veca,vecb and vecc are 3 non - coplanar vectors, then the values of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}| is equal to

OBJECTIVE RD SHARMA-SCALAR AND VECTOR PRODUCTS OF THREE VECTORS -Exercise
  1. [(veca,vecb,axxvecb)]+(veca.vecb)^(2)=

    Text Solution

    |

  2. Let vec(alpha),vec(beta) and vec(gamma be the unit vectors such that v...

    Text Solution

    |

  3. If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,...

    Text Solution

    |

  4. If [(veca,vecb,vecc)]=3, then the volume (in cubic units) of the paral...

    Text Solution

    |

  5. If V is the volume of the parallelopiped having three coterminous edge...

    Text Solution

    |

  6. The unit vector veca and vecb are perpendicular, and the unit vector v...

    Text Solution

    |

  7. If the vector vec(AB)=-3hati+4hatk and vec(AC)=5hati-lamdahatj+4hatk ...

    Text Solution

    |

  8. Let veca and vecb be two mutually perpendicular unit vectors and vecc ...

    Text Solution

    |

  9. Let the position vectors of vertices A,B,C of DeltaABC be respectively...

    Text Solution

    |

  10. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  11. veca and vecb are two unit vectors that are mutually perpendicular. A...

    Text Solution

    |

  12. If the vectors 2ahati+bhatj+chatk, bhati+chatj+2ahatk and chati+2ahatj...

    Text Solution

    |

  13. Let vec(alpha)=ahati+bhatj+chatk,vecb=bhati+chatj+ahatk and vec(gamma)...

    Text Solution

    |

  14. Let veca,vecb,vecc be three mutually perpendicular vectors having same...

    Text Solution

    |

  15. Let veca,vecb and vecc be the three non-coplanar vectors and vecd be a...

    Text Solution

    |

  16. Let vecr be a unit vector satisfying vecrxxveca=vecb, where |veca|=sqr...

    Text Solution

    |

  17. Let veca and vecc be unit vectors such that |vecb|=4 and vecaxxvecb=2(...

    Text Solution

    |

  18. If 4veca+5vecb+9vecc=vec0 then (vecaxxvecb).{(vecbxxvecc)xx(veccxxveca...

    Text Solution

    |

  19. If in a triagle ABC, vec(AB)=(vecu)/(|vecu|)-(vecv)/(|vecv|) and vecAC...

    Text Solution

    |

  20. Let A(2hati+3hatj+5hatk),B(-hati+3hatj+2hatk) and C(lamdahati+5hatj+mu...

    Text Solution

    |