Home
Class 11
MATHS
Find the modulus and amplitude of the f...

Find the modulus and amplitude of the following:
(i) `(1+i)/(1-i)`
(ii) `(1)/(1+i)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and amplitude of the given complex numbers, we will follow a systematic approach for each part. ### Part (i): Find the modulus and amplitude of \((1+i)/(1-i)\) **Step 1: Calculate the modulus of the numerator and denominator.** - The modulus of a complex number \(z = a + bi\) is given by \(|z| = \sqrt{a^2 + b^2}\). - For \(1 + i\): \[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{1 + 1} = \sqrt{2} \] - For \(1 - i\): \[ |1 - i| = \sqrt{1^2 + (-1)^2} = \sqrt{1 + 1} = \sqrt{2} \] **Step 2: Use the property of modulus for division.** - The modulus of the quotient is given by: \[ \left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|} \] - Thus, we have: \[ \left|\frac{1+i}{1-i}\right| = \frac{|1+i|}{|1-i|} = \frac{\sqrt{2}}{\sqrt{2}} = 1 \] **Step 3: Calculate the amplitude (argument) of the numerator and denominator.** - The argument of a complex number \(z = a + bi\) is given by \(\text{arg}(z) = \tan^{-1}\left(\frac{b}{a}\right)\). - For \(1 + i\): \[ \text{arg}(1+i) = \tan^{-1}\left(\frac{1}{1}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] - For \(1 - i\): \[ \text{arg}(1-i) = \tan^{-1}\left(\frac{-1}{1}\right) = \tan^{-1}(-1) = -\frac{\pi}{4} \] **Step 4: Use the property of arguments for division.** - The argument of the quotient is given by: \[ \text{arg}\left(\frac{z_1}{z_2}\right) = \text{arg}(z_1) - \text{arg}(z_2) \] - Thus, we have: \[ \text{arg}\left(\frac{1+i}{1-i}\right) = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2} \] ### Conclusion for Part (i): - Modulus: \(1\) - Amplitude: \(\frac{\pi}{2}\) --- ### Part (ii): Find the modulus and amplitude of \(\frac{1}{1+i}\) **Step 1: Calculate the modulus of the denominator.** - For \(1 + i\): \[ |1 + i| = \sqrt{1^2 + 1^2} = \sqrt{2} \] **Step 2: Use the property of modulus for division.** - The modulus of the quotient is: \[ \left|\frac{1}{1+i}\right| = \frac{|1|}{|1+i|} = \frac{1}{\sqrt{2}} \] **Step 3: Calculate the amplitude (argument) of the numerator and denominator.** - The argument of \(1\) is: \[ \text{arg}(1) = 0 \] - The argument of \(1 + i\) is: \[ \text{arg}(1+i) = \frac{\pi}{4} \] **Step 4: Use the property of arguments for division.** - The argument of the quotient is: \[ \text{arg}\left(\frac{1}{1+i}\right) = \text{arg}(1) - \text{arg}(1+i) = 0 - \frac{\pi}{4} = -\frac{\pi}{4} \] ### Conclusion for Part (ii): - Modulus: \(\frac{1}{\sqrt{2}}\) - Amplitude: \(-\frac{\pi}{4}\) ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (d)|5 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Short Answer Type Questions|23 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (b)|9 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and amplitude of the following complex numbers: -1-i

Find the modulus and of the amplitude of the complex numbers: (1+i)/(1-i)

Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i) (ii) 1/(1+i)

Find the modulus and argument of the following complex number: (1+i)/(1-i)

Find the modulus and argument of the following complex number: (1)/(1+i)

Find the modulus and amplitude of the following complex numbers: sqrt3+i

Find the values of the following : (i) i^(73) (ii) i^(-6) (iii) (1)/(i)

Find the modulus of the following :(1-i sqrt(3))/(2+2i)

Find the modulus of the following: (1)4+i(ii)-2-3i(iii)(1)/(3-2i)