Home
Class 11
MATHS
Express the result in the form x+iy, whe...

Express the result in the form x+iy, where x,y are real number `i=sqrt(-1)`:
(i) `(2-3i)/(4-i)`
(ii) `(2+3i)/(-5-4i)`
(iii) `(1+i)/(3+i)`
(iv) `(3+2i)/(4-3i)`

Text Solution

AI Generated Solution

The correct Answer is:
To express the given complex numbers in the form \( x + iy \), where \( x \) and \( y \) are real numbers, we will follow a systematic approach for each part. ### (i) \(\frac{2-3i}{4-i}\) **Step 1:** Multiply the numerator and denominator by the conjugate of the denominator. \[ \frac{2-3i}{4-i} \cdot \frac{4+i}{4+i} = \frac{(2-3i)(4+i)}{(4-i)(4+i)} \] **Step 2:** Calculate the denominator. \[ (4-i)(4+i) = 4^2 - (-1) = 16 + 1 = 17 \] **Step 3:** Calculate the numerator. \[ (2-3i)(4+i) = 2 \cdot 4 + 2 \cdot i - 3i \cdot 4 - 3i \cdot i = 8 + 2i - 12i - 3(-1) = 8 - 10i + 3 = 11 - 10i \] **Step 4:** Combine the results. \[ \frac{11 - 10i}{17} = \frac{11}{17} - \frac{10}{17}i \] Thus, in the form \( x + iy \): \[ x = \frac{11}{17}, \quad y = -\frac{10}{17} \] --- ### (ii) \(\frac{2+3i}{-5-4i}\) **Step 1:** Factor out the negative from the denominator. \[ \frac{2+3i}{-5-4i} = -\frac{2+3i}{5+4i} \] **Step 2:** Multiply by the conjugate of the denominator. \[ -\frac{2+3i}{5+4i} \cdot \frac{5-4i}{5-4i} = -\frac{(2+3i)(5-4i)}{(5+4i)(5-4i)} \] **Step 3:** Calculate the denominator. \[ (5+4i)(5-4i) = 5^2 - (4i)^2 = 25 + 16 = 41 \] **Step 4:** Calculate the numerator. \[ (2+3i)(5-4i) = 10 - 8i + 15i - 12(-1) = 10 + 7i + 12 = 22 + 7i \] **Step 5:** Combine the results. \[ -\frac{22 + 7i}{41} = -\frac{22}{41} - \frac{7}{41}i \] Thus, in the form \( x + iy \): \[ x = -\frac{22}{41}, \quad y = -\frac{7}{41} \] --- ### (iii) \(\frac{1+i}{3+i}\) **Step 1:** Multiply by the conjugate of the denominator. \[ \frac{1+i}{3+i} \cdot \frac{3-i}{3-i} = \frac{(1+i)(3-i)}{(3+i)(3-i)} \] **Step 2:** Calculate the denominator. \[ (3+i)(3-i) = 3^2 - (i)^2 = 9 + 1 = 10 \] **Step 3:** Calculate the numerator. \[ (1+i)(3-i) = 3 - i + 3i - i^2 = 3 + 2i + 1 = 4 + 2i \] **Step 4:** Combine the results. \[ \frac{4 + 2i}{10} = \frac{4}{10} + \frac{2}{10}i = \frac{2}{5} + \frac{1}{5}i \] Thus, in the form \( x + iy \): \[ x = \frac{2}{5}, \quad y = \frac{1}{5} \] --- ### (iv) \(\frac{3+2i}{4-3i}\) **Step 1:** Multiply by the conjugate of the denominator. \[ \frac{3+2i}{4-3i} \cdot \frac{4+3i}{4+3i} = \frac{(3+2i)(4+3i)}{(4-3i)(4+3i)} \] **Step 2:** Calculate the denominator. \[ (4-3i)(4+3i) = 4^2 - (3i)^2 = 16 + 9 = 25 \] **Step 3:** Calculate the numerator. \[ (3+2i)(4+3i) = 12 + 9i + 8i + 6(-1) = 12 + 17i - 6 = 6 + 17i \] **Step 4:** Combine the results. \[ \frac{6 + 17i}{25} = \frac{6}{25} + \frac{17}{25}i \] Thus, in the form \( x + iy \): \[ x = \frac{6}{25}, \quad y = \frac{17}{25} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Long Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (f) Short Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (d)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) 3i^(3)(15i^(6)) (ii) (2+7i)^(3) (iii) ((1)/(2)+2i)^(3)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (5+sqrt(2)i)/(1-sqrt(2)i) (ii) (2+i)/((1+i)(1-2i)) .

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (-5+3i)(8-7i) (ii) (-sqrt(3)+sqrt(-2))(2sqrt(3)-i) (iii) (sqrt(2)-sqrt(3)i)^(2)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (5+9i)-:(-3+4i) (ii) [(sqrt(5)+(i)/(2))(sqrt(5)-2i)]-:(6+5i) (iii) ((1-i)(2-i)(3-i))/(1+i) (iv) (1+3i)/((1-2i)^(2))

Perform the following by the indicated operations. Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : Simply: (i) (sqrt(5)+7i)(sqrt(5)-7i)^(3) (ii) (1+i)(2+3i)(3+4i)(4+5i) (iii) (1+i^(2))+i^(4)+i^(6) .

(x+iy)(2-3i)=4+i

Perform the indicated operation and give your anwer in the form x+iy , where x and y are real numbers and i=sqrt(-1) : (i) ((1)/(2)+(1)/(4)i)(-(2)/(3)-(1)/(4)i) (ii) (5+2i)/(-1+sqrt(3)i) . (iii) (sqrt(5)-7i)(sqrt(5)-7i)^(2)+(-2+7i)^(2) .

Express (2+i)^2/(2+3i) in the form x+iy.

Express (1)/(4-5i) in the form of a+ib(i)(4+i5)/(41)(ii)(3+i4)/(41)(iii)(2+i3)/(41) (iv) (2-i3)/(41)

Prove that the following complex numbers are purely real: (i) ((2+3i)/(3+4i))((2-3i)/(3-4i)) (ii) ((3+2i)/(2-3i))((3-2i)/(2+3i))

MODERN PUBLICATION-COMPLEX NUMBERS-Exercise 5 (e) Short Answer Type Questions
  1. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  2. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  3. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  4. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  5. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  6. Perform the following by the indicated operations. Express the result ...

    Text Solution

    |

  7. Perform the following by the indicated operations. Express the result ...

    Text Solution

    |

  8. Compute: (i) sqrt(-49)(2+sqrt(-9)) (ii) [2+sqrt(-25)]-[3-sqrt(-16)]+...

    Text Solution

    |

  9. Find real q such that (3+2isintheta)/(1-2isintheta) is purely real.

    Text Solution

    |

  10. (a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii...

    Text Solution

    |

  11. Find the reciprocal of : (i) 7+sqrt(7)i (ii) i-5.

    Text Solution

    |

  12. Prove that: (i) z=overline(z) iff z is real (ii) z=-overline(z) if...

    Text Solution

    |

  13. Prove that: R(e)z=(z+overline(z))/(2),I(m)z=(z-overline(z))/(2i)

    Text Solution

    |

  14. Prove that: (i) the sum of a complex number and its conjugate is real ...

    Text Solution

    |

  15. Give an example to show that subtraction of complex number is not comm...

    Text Solution

    |

  16. Find the sum and product of the complex numbers -sqrt(3)+sqrt(-2) and ...

    Text Solution

    |

  17. If z(1),z(2) are respectively 1-i,-2+4i, find I(m){(z(1)z(2))/(z(1))}.

    Text Solution

    |

  18. Finid the vlues of x and y if: (i) (x+iy)(1+i)=1-i (ii) ((1+i)x-2i...

    Text Solution

    |

  19. If 1+4sqrt(3)i=(1+ib)^(2), prove that: a^(2)-b^(2)=1 and ab=2sqrt(3)...

    Text Solution

    |

  20. Show that if a,b,c,d in R, overline((a+ib)(c+id))=(a-ib)(c-id).

    Text Solution

    |