Home
Class 11
MATHS
Express the result in the form x+iy, whe...

Express the result in the form x+iy, where x,y are real number `i=sqrt(-1)`:
(i) `(5+sqrt(2)i)/(1-sqrt(2)i)`
(ii) `(2+i)/((1+i)(1-2i))`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given problems step by step. ### Part (i): \((5 + \sqrt{2}i)/(1 - \sqrt{2}i)\) **Step 1: Rationalize the denominator.** To eliminate the imaginary part in the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \(1 + \sqrt{2}i\). \[ \frac{(5 + \sqrt{2}i)(1 + \sqrt{2}i)}{(1 - \sqrt{2}i)(1 + \sqrt{2}i)} \] **Step 2: Calculate the denominator.** Using the difference of squares formula, we have: \[ (1 - \sqrt{2}i)(1 + \sqrt{2}i) = 1^2 - (\sqrt{2}i)^2 = 1 - (-2) = 1 + 2 = 3 \] **Step 3: Calculate the numerator.** Now, we expand the numerator: \[ (5 + \sqrt{2}i)(1 + \sqrt{2}i) = 5 \cdot 1 + 5 \cdot \sqrt{2}i + \sqrt{2}i \cdot 1 + \sqrt{2}i \cdot \sqrt{2}i \] \[ = 5 + 5\sqrt{2}i + \sqrt{2}i + 2i^2 = 5 + 5\sqrt{2}i + \sqrt{2}i - 2 \] \[ = (5 - 2) + (5\sqrt{2} + \sqrt{2})i = 3 + 6\sqrt{2}i \] **Step 4: Combine the results.** Now, we can write the expression as: \[ \frac{3 + 6\sqrt{2}i}{3} \] **Step 5: Simplify.** Dividing each term by 3 gives: \[ 1 + 2\sqrt{2}i \] Thus, the result in the form \(x + iy\) is: \[ \boxed{1 + 2\sqrt{2}i} \] --- ### Part (ii): \(\frac{(2+i)}{(1+i)(1-2i)}\) **Step 1: Calculate the denominator.** First, we expand the denominator: \[ (1+i)(1-2i) = 1 \cdot 1 + 1 \cdot (-2i) + i \cdot 1 + i \cdot (-2i) \] \[ = 1 - 2i + i - 2i^2 = 1 - 2i + i + 2 = 3 - i \] **Step 2: Write the expression.** Now we have: \[ \frac{(2+i)}{(3-i)} \] **Step 3: Rationalize the denominator.** We multiply the numerator and the denominator by the conjugate of the denominator, \(3 + i\): \[ \frac{(2+i)(3+i)}{(3-i)(3+i)} \] **Step 4: Calculate the denominator.** Using the difference of squares formula again: \[ (3-i)(3+i) = 3^2 - i^2 = 9 - (-1) = 9 + 1 = 10 \] **Step 5: Calculate the numerator.** Now, we expand the numerator: \[ (2+i)(3+i) = 2 \cdot 3 + 2 \cdot i + i \cdot 3 + i \cdot i \] \[ = 6 + 2i + 3i + i^2 = 6 + 5i - 1 = 5 + 5i \] **Step 6: Combine the results.** Now we can write the expression as: \[ \frac{5 + 5i}{10} \] **Step 7: Simplify.** Dividing each term by 10 gives: \[ \frac{1}{2} + \frac{1}{2}i \] Thus, the result in the form \(x + iy\) is: \[ \boxed{\frac{1}{2} + \frac{1}{2}i} \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Long Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (f) Short Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (d)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

(5+sqrt(2)i)/(1-2sqrt(i))

Perform the following by the indicated operations. Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : Simply: (i) (sqrt(5)+7i)(sqrt(5)-7i)^(3) (ii) (1+i)(2+3i)(3+4i)(4+5i) (iii) (1+i^(2))+i^(4)+i^(6) .

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (2-3i)/(4-i) (ii) (2+3i)/(-5-4i) (iii) (1+i)/(3+i) (iv) (3+2i)/(4-3i)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) 3i^(3)(15i^(6)) (ii) (2+7i)^(3) (iii) ((1)/(2)+2i)^(3)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (-5+3i)(8-7i) (ii) (-sqrt(3)+sqrt(-2))(2sqrt(3)-i) (iii) (sqrt(2)-sqrt(3)i)^(2)

Express the result in the form x+iy, where x,y are real number i=sqrt(-1) : (i) (5+9i)-:(-3+4i) (ii) [(sqrt(5)+(i)/(2))(sqrt(5)-2i)]-:(6+5i) (iii) ((1-i)(2-i)(3-i))/(1+i) (iv) (1+3i)/((1-2i)^(2))

sqrt(-i) = (1-i)/sqrt2

(iii) (1+i)/(sqrt(2))=sqrt(i)

Perform the indicated operation and give your anwer in the form x+iy , where x and y are real numbers and i=sqrt(-1) : (i) ((1)/(2)+(1)/(4)i)(-(2)/(3)-(1)/(4)i) (ii) (5+2i)/(-1+sqrt(3)i) . (iii) (sqrt(5)-7i)(sqrt(5)-7i)^(2)+(-2+7i)^(2) .

Express the following in the form a+ib (i) (5+sqrt(2i))/(1-sqrt(2i)) (ii)

MODERN PUBLICATION-COMPLEX NUMBERS-Exercise 5 (e) Short Answer Type Questions
  1. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  2. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  3. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  4. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  5. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  6. Perform the following by the indicated operations. Express the result ...

    Text Solution

    |

  7. Perform the following by the indicated operations. Express the result ...

    Text Solution

    |

  8. Compute: (i) sqrt(-49)(2+sqrt(-9)) (ii) [2+sqrt(-25)]-[3-sqrt(-16)]+...

    Text Solution

    |

  9. Find real q such that (3+2isintheta)/(1-2isintheta) is purely real.

    Text Solution

    |

  10. (a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii...

    Text Solution

    |

  11. Find the reciprocal of : (i) 7+sqrt(7)i (ii) i-5.

    Text Solution

    |

  12. Prove that: (i) z=overline(z) iff z is real (ii) z=-overline(z) if...

    Text Solution

    |

  13. Prove that: R(e)z=(z+overline(z))/(2),I(m)z=(z-overline(z))/(2i)

    Text Solution

    |

  14. Prove that: (i) the sum of a complex number and its conjugate is real ...

    Text Solution

    |

  15. Give an example to show that subtraction of complex number is not comm...

    Text Solution

    |

  16. Find the sum and product of the complex numbers -sqrt(3)+sqrt(-2) and ...

    Text Solution

    |

  17. If z(1),z(2) are respectively 1-i,-2+4i, find I(m){(z(1)z(2))/(z(1))}.

    Text Solution

    |

  18. Finid the vlues of x and y if: (i) (x+iy)(1+i)=1-i (ii) ((1+i)x-2i...

    Text Solution

    |

  19. If 1+4sqrt(3)i=(1+ib)^(2), prove that: a^(2)-b^(2)=1 and ab=2sqrt(3)...

    Text Solution

    |

  20. Show that if a,b,c,d in R, overline((a+ib)(c+id))=(a-ib)(c-id).

    Text Solution

    |