Home
Class 11
MATHS
(a) Write the conjugates of the followin...

(a) Write the conjugates of the following:
(i) 3+i
(ii) 3-i
(iii) `-sqrt(5)-sqrt(7)i`
(iv) `-sqrt(5)i`
(v) `(4)/(5)`
(vi) `49-(i)/(7)`
(vii) `(1-i)/(1+i)`
(viii) `(1+i)^(2)`
(ix) `(2+5i)^(2)`
(x) `(-2-(1)/(3)i)^(3)`
(b) Find the real number x and y if:
(i) `(x-iy)(3+5i)` is the conjugate of -6-24`i`
(ii) `-3+ix^(2)y` and `x^(2)+y+4i` are congugate of each other.

Text Solution

AI Generated Solution

The correct Answer is:
### Step-by-Step Solution #### Part (a): Finding the Conjugates 1. **Conjugate of \(3 + i\)**: - The conjugate is obtained by changing the sign of the imaginary part. - Conjugate: \(3 - i\) 2. **Conjugate of \(3 - i\)**: - Change the sign of the imaginary part. - Conjugate: \(3 + i\) 3. **Conjugate of \(-\sqrt{5} - \sqrt{7}i\)**: - Change the sign of the imaginary part. - Conjugate: \(-\sqrt{5} + \sqrt{7}i\) 4. **Conjugate of \(-\sqrt{5}i\)**: - Change the sign of the imaginary part. - Conjugate: \(\sqrt{5}i\) 5. **Conjugate of \(\frac{4}{5}\)**: - Since this is a real number, its conjugate is itself. - Conjugate: \(\frac{4}{5}\) 6. **Conjugate of \(49 - \frac{i}{7}\)**: - Change the sign of the imaginary part. - Conjugate: \(49 + \frac{i}{7}\) 7. **Conjugate of \(\frac{1 - i}{1 + i}\)**: - Use the property of conjugates: \(\frac{a - bi}{c + di} = \frac{(a - bi)(c - di)}{(c + di)(c - di)}\). - Conjugate: \(\frac{1 + i}{1 - i}\) 8. **Conjugate of \((1 + i)^2\)**: - First, calculate \((1 + i)^2 = 1^2 + 2(1)(i) + i^2 = 1 + 2i - 1 = 2i\). - Conjugate: \(-2i\) 9. **Conjugate of \((2 + 5i)^2\)**: - Calculate \((2 + 5i)^2 = 2^2 + 2(2)(5i) + (5i)^2 = 4 + 20i - 25 = -21 + 20i\). - Conjugate: \(-21 - 20i\) 10. **Conjugate of \((-2 - \frac{1}{3}i)^3\)**: - Calculate \((-2 - \frac{1}{3}i)^3\) using the binomial theorem or direct multiplication. - Conjugate: \(-2 + \frac{1}{3}i\) (after calculating the cube). #### Part (b): Finding Real Numbers \(x\) and \(y\) 1. **For \((x - iy)(3 + 5i)\) being conjugate of \(-6 - 24i\)**: - Expand: \((x - iy)(3 + 5i) = 3x + 5xi - 3iy - 5y\). - Combine real and imaginary parts: \((3x + 5y) + (5x - 3y)i = -6 + 24i\). - Set up equations: - Real part: \(3x + 5y = -6\) - Imaginary part: \(5x - 3y = 24\) - Solve these equations simultaneously to find \(x\) and \(y\). 2. **For \(-3 + ix^2y\) and \(x^2 + y + 4i\) being conjugates**: - Set up equations: - Real part: \(-3 = x^2 + y\) - Imaginary part: \(x^2y = -4\) - Substitute \(y\) from the first equation into the second and solve for \(x\) and \(y\).
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Long Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (f) Short Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (d)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Find the real numbers x and y, if (x-iy)(3+5i) is the conjugate of -6-24i

Find real number x and y if (x-iy)(4 + 7i) is the conjugate of 29-2i.

Knowledge Check

  • If (x-iy)(3+5i) is the conjugate of (-6 -24i), then values of x and y are respectively

    A
    3, -3
    B
    3, 4
    C
    -3, 4
    D
    -3, -4
  • Similar Questions

    Explore conceptually related problems

    Write the real and imaginary parts of the following (i) 7 (ii) 3i (iii) (sqrt(5))/(7)i

    Write the conjugate of the following numbers: sqrt(5)-i and sqrt(2)+sqrt(3)i

    Find the conjugate of (3+i)/(2+5i)

    Find the value of x and y if (i)3x+(2x-y)i=6-3i( ii) 3x+5yi=5i

    Find the square roots of the following: (i) 3-4sqrt(7)i (ii) 4+6sqrt(-5) (iii) -2+2sqrt(3)i .

    Find the square root of the following : (i) 3-4i (ii) 4+6isqrt(5) (iii) -i (iv) 8i (v) -7+24i (vi) -24- 10i

    Write the real and imaginary parts of the following complex numbers: (i) 7+3i (ii) 0+7i (iii) sqrt(5)+0i