Home
Class 11
MATHS
Finid the vlues of x and y if: (i) (x+...

Finid the vlues of x and y if:
(i) `(x+iy)(1+i)=1-i`
(ii) `((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i`, where `i=sqrt(-1)`.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the given equations step by step. ### Part (i): Solve \((x + iy)(1 + i) = 1 - i\) 1. **Expand the left-hand side**: \[ (x + iy)(1 + i) = x(1 + i) + iy(1 + i) = x + xi + iy + i^2y \] Since \(i^2 = -1\), we have: \[ = x + xi + iy - y = (x - y) + i(x + y) \] 2. **Set the real and imaginary parts equal**: \[ (x - y) + i(x + y) = 1 - i \] This gives us two equations: - Real part: \(x - y = 1\) (1) - Imaginary part: \(x + y = -1\) (2) 3. **Solve the system of equations**: From equation (1): \[ x = y + 1 \] Substitute \(x\) in equation (2): \[ (y + 1) + y = -1 \Rightarrow 2y + 1 = -1 \Rightarrow 2y = -2 \Rightarrow y = -1 \] Now substitute \(y\) back into equation (1): \[ x - (-1) = 1 \Rightarrow x + 1 = 1 \Rightarrow x = 0 \] **Values found**: \(x = 0\), \(y = -1\) ### Part (ii): Solve \(\frac{(1+i)x - 2i}{3+i} + \frac{(2-3i)y + i}{3-i} = i\) 1. **Rationalize the denominators**: For \(\frac{(1+i)x - 2i}{3+i}\), multiply numerator and denominator by \(3 - i\): \[ \frac{((1+i)x - 2i)(3-i)}{(3+i)(3-i)} = \frac{(3(1+i)x - 2i(3-i))}{9 + 1} = \frac{(3(1+i)x - 6i + 2)}{10} \] For \(\frac{(2-3i)y + i}{3-i}\), multiply numerator and denominator by \(3 + i\): \[ \frac{((2-3i)y + i)(3+i)}{(3-i)(3+i)} = \frac{((2-3i)y(3+i) + i(3+i))}{10} \] 2. **Combine the fractions**: The equation becomes: \[ \frac{(3(1+i)x - 6i + 2) + (6y + (2-3i)y)}{10} = i \] Simplifying the numerator: \[ 3(1+i)x - 6i + 2 + 6y + (2-3i)y = 3x + 3xi - 6i + 2 + 6y + 2y - 3iy \] Combine like terms: \[ = (3x + 6y + 2) + i(3x - 6 - 3y) \] 3. **Set equal to \(10i\)**: \[ \frac{(3x + 6y + 2) + i(3x - 6 - 3y)}{10} = i \] Multiply both sides by 10: \[ (3x + 6y + 2) + i(3x - 6 - 3y) = 10i \] This gives us two equations: - Real part: \(3x + 6y + 2 = 0\) (3) - Imaginary part: \(3x - 6 - 3y = 10\) (4) 4. **Solve the system of equations**: From equation (3): \[ 3x + 6y = -2 \Rightarrow x + 2y = -\frac{2}{3} \quad (5) \] From equation (4): \[ 3x - 3y = 16 \Rightarrow x - y = \frac{16}{3} \quad (6) \] 5. **Substitute (5) into (6)**: Substitute \(x = -\frac{2}{3} - 2y\) into equation (6): \[ -\frac{2}{3} - 2y - y = \frac{16}{3} \] Combine like terms: \[ -\frac{2}{3} - 3y = \frac{16}{3} \Rightarrow -3y = \frac{16}{3} + \frac{2}{3} = \frac{18}{3} = 6 \Rightarrow y = -2 \] Substitute \(y\) back into equation (5): \[ x + 2(-2) = -\frac{2}{3} \Rightarrow x - 4 = -\frac{2}{3} \Rightarrow x = -\frac{2}{3} + 4 = -\frac{2}{3} + \frac{12}{3} = \frac{10}{3} \] **Values found**: \(x = \frac{10}{3}\), \(y = -2\) ### Summary of Solutions: - For part (i): \(x = 0\), \(y = -1\) - For part (ii): \(x = \frac{10}{3}\), \(y = -2\)
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (e) Long Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (f) Short Answer Type Questions|3 Videos
  • COMPLEX NUMBERS

    MODERN PUBLICATION|Exercise Exercise 5 (d)|5 Videos
  • BINOMIAL THEOREM

    MODERN PUBLICATION|Exercise COMPETITION FILE (JEE MAIN)|11 Videos
  • CONIC SECTIONS

    MODERN PUBLICATION|Exercise CHAPTER TEST 11|12 Videos

Similar Questions

Explore conceptually related problems

Find the real values of x and y if (i)(3x-7)+2iy=-5y+(5+x)i (ii) (x+iy)(2-3i)=(4+i)

Find the real values of x and y,quad if :((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=

Find x and y if: (x+iy)(2+3i)=4+i

Find the real value of x and y if ((1+i)x-2i)/(3+i)+((2-3i)y+i)/(3-i)=i

(x+iy)(2-3i)=4+i

Find the real values of x and y for which ((x-1)/(3+i)+(y-1)/(3-i))=i .

Find the values of x and y : (i) x+3i=6-9iy (ii) (x+iy)-(3-2i)=5+i (iii) i=x+2yi (iv) 4x+i(x-y)=2-5i (v) (x+2iy)(2-i)^(2)=10(1-i)

Find the real values of x and y for which : {:((i),(1-i)x+(1+i)y=1 - 3i,(ii),(x+iy)(3-2i)=(12+5i)),((iii),x+4yi =ix + y + 3,(iv),(1+i)y^(2)+(6+i)=(2+i)x),((v),((x+3i))/((2+iy))=(1-i),(vi),((1+i)x-2i)/((3+i))+((2-3i)y+i)/((3-i))=i):}

MODERN PUBLICATION-COMPLEX NUMBERS-Exercise 5 (e) Short Answer Type Questions
  1. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  2. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  3. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  4. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  5. Express the result in the form x+iy, where x,y are real number i=sqrt(...

    Text Solution

    |

  6. Perform the following by the indicated operations. Express the result ...

    Text Solution

    |

  7. Perform the following by the indicated operations. Express the result ...

    Text Solution

    |

  8. Compute: (i) sqrt(-49)(2+sqrt(-9)) (ii) [2+sqrt(-25)]-[3-sqrt(-16)]+...

    Text Solution

    |

  9. Find real q such that (3+2isintheta)/(1-2isintheta) is purely real.

    Text Solution

    |

  10. (a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii...

    Text Solution

    |

  11. Find the reciprocal of : (i) 7+sqrt(7)i (ii) i-5.

    Text Solution

    |

  12. Prove that: (i) z=overline(z) iff z is real (ii) z=-overline(z) if...

    Text Solution

    |

  13. Prove that: R(e)z=(z+overline(z))/(2),I(m)z=(z-overline(z))/(2i)

    Text Solution

    |

  14. Prove that: (i) the sum of a complex number and its conjugate is real ...

    Text Solution

    |

  15. Give an example to show that subtraction of complex number is not comm...

    Text Solution

    |

  16. Find the sum and product of the complex numbers -sqrt(3)+sqrt(-2) and ...

    Text Solution

    |

  17. If z(1),z(2) are respectively 1-i,-2+4i, find I(m){(z(1)z(2))/(z(1))}.

    Text Solution

    |

  18. Finid the vlues of x and y if: (i) (x+iy)(1+i)=1-i (ii) ((1+i)x-2i...

    Text Solution

    |

  19. If 1+4sqrt(3)i=(1+ib)^(2), prove that: a^(2)-b^(2)=1 and ab=2sqrt(3)...

    Text Solution

    |

  20. Show that if a,b,c,d in R, overline((a+ib)(c+id))=(a-ib)(c-id).

    Text Solution

    |