Home
Class 10
MATHS
Give examples of polynomials p(x), g(x),...

Give examples of polynomials p(x), g(x), g(x) and r(x), which satisfy the division algorithm and (i) `( i i ) (iii) d eg"\ "p(( i v ) x (v))"\ "="\ "d eg"\ "q(( v i ) x (vii))( v i i i )` (ix) (ii) `( x ) (xi) d eg"\ "q(( x i i ) x (xiii))"\ "="

Text Solution

Verified by Experts

The correct Answer is:
(i) `2x^(2) -3 = 2(x^(2) +1)-5`, (ii) `x^(3) +1=0(x^(4)) + (x^(2)+1)`
(iii) `x^(2) +1=1(x^(2)-1) +2`
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (LONG ANSWER QUESTIONS)|11 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-I)|15 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • POST-MID TEAM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos

Similar Questions

Explore conceptually related problems

Give examples of polynomials p(x), g(x), 9(x) and r(x), which satisfy the division algorithm and deg r(x)=0

Give examples of polynomials p(x), g(x), 9(x) and r(x), which satisfy the division algorithm and deg p(x) = deg q(x)

Give examples of polynomials p(x), g(x), 9(x) and r(x), which satisfy the division algorithm and deg q(x)= deg r(x)

Give examples of polynomials p(x), g(x), g(x) and r(x), which satisfy the division algorithm and (i) degp(x)=degq(x) (ii)degq(x)=degr(x) (iii) degr(x)=0

Find a zero of the polynomial (i) p(x)=x-3 (ii) q(x)=3x+2

Find a zero of the polynomial : (i) p(x)=4x-3 (ii) p(x)=2x-2

Which of the following are state functions? (i) Q (ii) w (iii). Q+w (iv) Q-w (v) Q_v (vi) Q_(pP) (vii) (Q)/(w) (viii). (Q)/(T) (ix) (DeltaX)/(T) (x) U+PV (xi) U-PV

In Fig.23, O A\ a n d\ O B are opposite rays: (i) If ( i i ) (iii) x=( i v ) (v) 25^(( v i )0( v i i ))( v i i i ) , (ix) (x) what is the value of ( x i ) (xii) y ? (xiii) (xiv) (xv) If ( x v i ) (xvii) y=( x v i i i ) (xix) 35^(( x x )0( x x i ))( x x i i ) , (xxiii) (xxiv) what is the value of ( x x v ) (xxvi) x ? (xxvii) (xxviii)

In Fig.78, we have (i) ( i i ) (iii)/_M L Y=2/_L M Q , (iv) (v) find ( v i ) (vii)/_L M Q (viii) (ix) (x) ( x i ) (xii)/_X L M=( x i i i ) (xiv)(( x v ) (xvi)2x-10 (xvii))^(( x v i i i )0( x i x ))( x x ) (xxi) (xxii) and ( x x i i i ) (xxiv)/_L M Q=x+( x x v ) (xxvi) 30^(( x x v i i )0( x x v i i i ))( x x i x ) , (xxx) (xxxi) find ( x x x i i ) (xxxiii) xdot( x x x i v ) (xxxv) (xxxvi) ( x x x v i i ) (xxxviii)/_X L M=/_P M L ,\ ( x x x i x ) (xl) find ( x l i ) (xlii)/_A L Y (xliii) (xliv) (xlv) ( x l v i ) (xlvii)/_A L Y=( x l v i i i ) (xlix)(( l ) (li)2x-15 (lii))^(( l i i i )0( l i v ))( l v ) ,\ /_L M Q=( l v i ) (lvii)(( l v i i i ) (lix) x+40 (lx))^(( l x i )0( l x i i ))( l x i i i ) , (lxiv) (lxv) find ( l x v i ) (lxvii) xdot( l x v i i i ) (lxix)