Home
Class 10
MATHS
If alpha and beta are the zeros of the q...

If `alpha` and `beta` are the zeros of the quadratic polynomial `f(x) = 3x^(2) – 5x - 2`, then evaluate
(i) `alpha^(2) + beta^(2)`, (ii) `alpha^(3) + beta^(3)`, (iii) `alpha^(2)/beta + beta^(2)/alpha`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expressions given the zeros of the quadratic polynomial \( f(x) = 3x^2 - 5x - 2 \). Let's go through the steps one by one. ### Step 1: Identify the coefficients The given polynomial is \( f(x) = 3x^2 - 5x - 2 \). Comparing it with the standard form \( ax^2 + bx + c \), we get: - \( a = 3 \) - \( b = -5 \) - \( c = -2 \) ### Step 2: Find the zeros (roots) of the polynomial The zeros of the polynomial can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Substitute the values of \( a \), \( b \), and \( c \): \[ x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 3 \cdot (-2)}}{2 \cdot 3} \] \[ x = \frac{5 \pm \sqrt{25 + 24}}{6} \] \[ x = \frac{5 \pm \sqrt{49}}{6} \] \[ x = \frac{5 \pm 7}{6} \] Thus, the roots are: \[ x = \frac{5 + 7}{6} = 2 \] \[ x = \frac{5 - 7}{6} = -\frac{1}{3} \] So, \( \alpha = 2 \) and \( \beta = -\frac{1}{3} \). ### Step 3: Evaluate \( \alpha^2 + \beta^2 \) We know: \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \] First, find \( \alpha + \beta \) and \( \alpha\beta \): \[ \alpha + \beta = 2 + \left(-\frac{1}{3}\right) = \frac{6}{3} - \frac{1}{3} = \frac{5}{3} \] \[ \alpha\beta = 2 \cdot \left(-\frac{1}{3}\right) = -\frac{2}{3} \] Now, calculate \( \alpha^2 + \beta^2 \): \[ \alpha^2 + \beta^2 = \left(\frac{5}{3}\right)^2 - 2 \cdot \left(-\frac{2}{3}\right) \] \[ \alpha^2 + \beta^2 = \frac{25}{9} + \frac{4}{3} \] \[ \alpha^2 + \beta^2 = \frac{25}{9} + \frac{12}{9} \] \[ \alpha^2 + \beta^2 = \frac{37}{9} \] ### Step 4: Evaluate \( \alpha^3 + \beta^3 \) We know: \[ \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 + \beta^2 - \alpha\beta) \] Using the values calculated: \[ \alpha^3 + \beta^3 = \left(\frac{5}{3}\right) \left(\frac{37}{9} + \frac{2}{3}\right) \] \[ \alpha^3 + \beta^3 = \left(\frac{5}{3}\right) \left(\frac{37}{9} + \frac{6}{9}\right) \] \[ \alpha^3 + \beta^3 = \left(\frac{5}{3}\right) \left(\frac{43}{9}\right) \] \[ \alpha^3 + \beta^3 = \frac{215}{27} \] ### Step 5: Evaluate \( \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} \) \[ \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{2^2}{-\frac{1}{3}} + \frac{\left(-\frac{1}{3}\right)^2}{2} \] \[ = \frac{4}{-\frac{1}{3}} + \frac{\frac{1}{9}}{2} \] \[ = 4 \cdot \left(-3\right) + \frac{1}{18} \] \[ = -12 + \frac{1}{18} \] \[ = -12 + \frac{1}{18} \] \[ = \frac{-216}{18} + \frac{1}{18} \] \[ = \frac{-215}{18} \] ### Summary of Results (i) \( \alpha^2 + \beta^2 = \frac{37}{9} \) (ii) \( \alpha^3 + \beta^3 = \frac{215}{27} \) (iii) \( \frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha} = \frac{-215}{18} \)
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (LONG ANSWER QUESTIONS)|11 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • POLYNOMIALS

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-I)|15 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    VK GLOBAL PUBLICATION|Exercise SELF-ASSESSMENT TEST|11 Videos
  • POST-MID TEAM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION-D|8 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of the quadratic polynomial f(x)=ax^(2)+bx+c, then evaluate: alpha^(4)beta^(4)

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q, then find the values of (i)alpha^(2)+beta^(2)( ii) (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeros of the quadratic polynomial f(x)=ax^(2)+bx+c, then evaluate: (i) alpha^(2)beta+alpha beta^(2)( ii) alpha^(4)+beta^(4)( iii) (1)/(a alpha+b)+(1)/(a beta+b)

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-x-4, find the value of (1)/(alpha)+(1)/(beta)-alpha beta

If alpha and beta are the zeros of the quadratic polynomial p(x)=4x^(2)-5x-1, find the value of alpha^(2)beta+alpha beta^(2)

If alpha and beta are the zeros of the quadratic polynomial f(x)=5x^(2)-7x+1, find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta be the zeroes of the quadratic polynomial f(x)=x^2-7x-4 then alpha/beta+beta/alpha=

If alpha and beta are the zeros of the quadratic polynomial f(x)=6x^(2)+x-2, find the value of (alpha)/(beta)+(beta)/(alpha)

if alpha and beta are the zeros of the quadratic polynomial f(x)=ax^(2)+bx+chen evaluate (1)/(alpha)+(1)/(beta)-2 alpha beta

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-5x+4 , find the value of (1)/(alpha)+(1)/(beta)-2 alpha beta