Home
Class 10
MATHS
Prove the following identity, where t...

Prove the following identity, where the angles involved are acute angles for which the expressions are defined. (v) `(cosA-sinA+1)/(cosA+sinA-1)="c o s e c A + c o t A"` `"u s i n g\ t h e\ i d e n t i f y\ c o s e c"^2A=1+cot^2A`

Text Solution

Verified by Experts

The correct Answer is:
cosec A + cot A.
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (VERY SHORT ANSWER QUESTIONS)|8 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-I)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise LONG ANSWER QUESTIONS|13 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

The expression (t a n A)/(1-cot A)+(cot A)/(1-t a n A) can be written as sin A cos A+1 b. s e c A\ cos e c A+1 c. t a n A+cot A d. s e c A+cos e c A

Prove: sqrt((1-cosA)/(1+cosA))+sqrt((1+cosA)/(1-cosA))=2 cos e c A

I fx+1/x=2,t h e p r i n c i p a l v a l u e o f sin^(-1)x is

Find the principal values of each of the following: (i) "c o s e c"^(-1)(2/(sqrt(3))) (ii) "c o s e c"^(-1)(2cos(2/3pi))

The expression (tanA)/(1-cotA)+(cotA)/(1-tanA) can be written as (1) s e c A""cos e c A""+""1 (2) t a n A""+""cot A (3) s e c A""+""cos e c A (4) s in A""cos A""+""1

Evaluate each of the following: "c o s e c"^(-1)("c o s e c"pi/4) (ii) "c o s e c"^(-1)("c o s e c"(3pi)/4)

Find the differentiation of sqrt(sec^2x+"c o s e c"^2x) w.r.t. \ x

Assuming full occupancy, a bogie of which class exhibits the highest profit margin? 3 t i e r b. A C-3 t i e r c. A C-t i e r d. A C-fi r s t c l a s s

Evaluate each of the following: "c o s e c"^(-1)("c o s e c"(6pi)/5) (ii) "c o s e c"^(-1)("c o s e c"(11pi)/6)

Evaluate each of the following: "c o s e c"^(-1)("c o s e c"(13pi)/6) (ii) "c o s e c"^(-1){"c o s e c"(-(9pi)/4)}