Home
Class 10
MATHS
If tan 3A = cot (A - 25^(@)), 3A lt 90^(...

If tan 3A = cot `(A - 25^(@))`, 3A `lt 90^(@)`, then find the value of `angle`A.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan 3A = \cot (A - 25^\circ) \) with the condition \( 3A < 90^\circ \), we can follow these steps: ### Step 1: Use the cotangent identity We know that \( \cot \theta = \tan (90^\circ - \theta) \). Therefore, we can rewrite the equation as: \[ \tan 3A = \tan (90^\circ - (A - 25^\circ)) \] ### Step 2: Simplify the right side Now, simplify the expression on the right side: \[ \tan 3A = \tan (90^\circ - A + 25^\circ) = \tan (115^\circ - A) \] ### Step 3: Set the angles equal Since the tangent function is periodic, we can set the angles equal to each other: \[ 3A = 115^\circ - A \] ### Step 4: Solve for A Now, we can solve for \( A \): \[ 3A + A = 115^\circ \] \[ 4A = 115^\circ \] \[ A = \frac{115^\circ}{4} = 28.75^\circ \] ### Step 5: Round the answer Rounding \( 28.75^\circ \) gives us approximately: \[ A \approx 29^\circ \] Thus, the value of angle \( A \) is \( 29^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-II)|48 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (LONG ANSWER QUESTIONS)|13 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (VERY SHORT ANSWER QUESTIONS)|8 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

If tan A =cot (A-18^(@)) where 2A is an acute angle , find the value of A.

If 3cot theta=2, then find the value of tan theta .

If tan2A=cot (A-12^@) , where 2A is an acute angle, find the value of A.

If tan2A=cot(A-18^(@)) where 2A is an acute angle, find the value of A.

if angle A=90^(@) , then find the value of tan ((B+C)/(2))

If tan (A+B) =1 and tan (A-B)= (1)/sqrt(3),0^(@)lt A+B lt 90^(@), then the value of sin (3A-7B) is :

If cot A =(4)/(3) and (A+B)=90^(@) , what is the value of tan B?

If tan A = 1 (0^@ lt A lt 90^@ ) and cos B = (1)/(sqrt2)(0^@ lt B lt 90^@) , then find the value of cos (A + B).