Home
Class 10
MATHS
If tan alpha = sqrt(3) and tan beta = (...

If tan `alpha = sqrt(3) ` and tan `beta = (1)/(sqrt(3))` , then find the value of cot `(alpha + beta)` .

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of cot(α + β) given that tan(α) = √3 and tan(β) = 1/√3, we can follow these steps: ### Step 1: Determine the angles α and β From the given values: - tan(α) = √3 corresponds to α = 60° (since tan(60°) = √3). - tan(β) = 1/√3 corresponds to β = 30° (since tan(30°) = 1/√3). ### Step 2: Calculate α + β Now, we can find α + β: - α + β = 60° + 30° = 90°. ### Step 3: Find cot(α + β) We need to find cot(α + β): - cot(α + β) = cot(90°). ### Step 4: Evaluate cot(90°) The cotangent of 90° is: - cot(90°) = 0. ### Final Answer Thus, the value of cot(α + β) is 0. ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-I)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-II)|48 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise HOTS (HIGHER ORDER THINKING SKILLS)|6 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

If tan alpha = 1/5, tan beta =(1)/(239), then the value of tan (4 alpha -beta) is

If tan alpha = 1/3 and tan beta = 1/2 , then: tan(alpha + beta) =

If 5tan alpha tan beta=3 , then find the value of (cos(alpha+beta))/(cos(alpha-beta))

If tan alpha = sqrt3+2 , then the value of tan alpha - cot alpha is

If cos(alpha+beta)+sin(alpha-beta)=0 and tan beta ne1 , then find the value of tan alpha .

tan(alpha+beta)=(1)/(2),tan(alpha-beta)=(1)/(3), then find the value of tan2 alpha

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

If alpha+beta=90^(@) and tan alpha=(3)/(4) then what is the value of cot beta?

If tan alpha=(m)/(m+1) and tan beta=(1)/(2m+1) Find the possible values of (alpha+beta)

If 2 sec 2 alpha = tan beta + cot beta, then one of the values of alpha + beta is