Home
Class 10
MATHS
If sin A = (1)/(2) , then find the value...

If sin A = `(1)/(2)` , then find the value of cos A.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of cos A when sin A = \( \frac{1}{2} \), we can use the Pythagorean identity in trigonometry, which states that: \[ \sin^2 A + \cos^2 A = 1 \] ### Step 1: Substitute the value of sin A Since we know that \( \sin A = \frac{1}{2} \), we can substitute this value into the Pythagorean identity. \[ \left(\frac{1}{2}\right)^2 + \cos^2 A = 1 \] ### Step 2: Calculate \( \sin^2 A \) Now, calculate \( \left(\frac{1}{2}\right)^2 \): \[ \frac{1}{4} + \cos^2 A = 1 \] ### Step 3: Isolate \( \cos^2 A \) Next, we need to isolate \( \cos^2 A \) by subtracting \( \frac{1}{4} \) from both sides: \[ \cos^2 A = 1 - \frac{1}{4} \] ### Step 4: Simplify the right side Now, simplify the right side: \[ \cos^2 A = \frac{4}{4} - \frac{1}{4} = \frac{3}{4} \] ### Step 5: Take the square root To find \( \cos A \), we take the square root of both sides. Remember that cosine can be positive or negative depending on the angle A, but we will consider the principal value first: \[ \cos A = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2} \] ### Final Answer Thus, the value of \( \cos A \) is: \[ \cos A = \frac{\sqrt{3}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-I)|6 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-II)|48 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise HOTS (HIGHER ORDER THINKING SKILLS)|6 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

If cos A =(1)/(3) ,then find the values of sin A and tan A.

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

If sinA+sin^(2)A=1 , then find the value of cos^(12)A+3cos^(10)A+3cos^(8)A+cos^(6)A+cos^(4)A+cos^(2)A .

find the value of cos(sin^(-1)x)

If sin x+sin^(2)x=1, then find the value of cos^(12)x+3cos^(10)x+3cos^(8)x+cos^(6)x-1

(i) if sin x= (1)/(3) find the value of sin 3x (ii) if cos x= (1)/(2) , find the value of cos 3x

If cos(2sin^(-1)x)=(1)/(9), then find the values of x.

If 2cos x+sin x=1, then find the value of 7cos x+6sin x

If (1+sin t)(1+cos t)=(5)/(4) then find the value of (1-sin t)(1-cos t)

If x in [1, 0) , then find the value of cos^(-1) (2x^(2) - 1) - 2 sin^(-1) x