Home
Class 10
MATHS
If cosec theta = 3x and cot theta = (3)/...

If cosec `theta` = 3x and cot `theta = (3)/(x)` , then find the value of `(x^(2) - (1)/(x^(2)))` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( \csc \theta = 3x \) 2. \( \cot \theta = \frac{3}{x} \) We need to find the value of \( x^2 - \frac{1}{x^2} \). ### Step 1: Express \( \sin \theta \) and \( \cos \theta \) From the definition of cosecant and cotangent, we know that: \[ \csc \theta = \frac{1}{\sin \theta} \implies \sin \theta = \frac{1}{3x} \] \[ \cot \theta = \frac{\cos \theta}{\sin \theta} \implies \cos \theta = \cot \theta \cdot \sin \theta = \frac{3}{x} \cdot \frac{1}{3x} = \frac{1}{x^2} \] ### Step 2: Use the Pythagorean identity We know that: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting the values of \( \sin \theta \) and \( \cos \theta \): \[ \left(\frac{1}{3x}\right)^2 + \left(\frac{1}{x^2}\right)^2 = 1 \] This simplifies to: \[ \frac{1}{9x^2} + \frac{1}{x^4} = 1 \] ### Step 3: Clear the denominators To eliminate the fractions, multiply through by \( 9x^4 \): \[ 9x^4 \cdot \frac{1}{9x^2} + 9x^4 \cdot \frac{1}{x^4} = 9x^4 \] This simplifies to: \[ x^2 + 9 = 9x^4 \] ### Step 4: Rearrange the equation Rearranging gives us: \[ 9x^4 - x^2 - 9 = 0 \] ### Step 5: Substitute \( y = x^2 \) Let \( y = x^2 \). Then the equation becomes: \[ 9y^2 - y - 9 = 0 \] ### Step 6: Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 9, b = -1, c = -9 \): \[ y = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 9 \cdot (-9)}}{2 \cdot 9} \] Calculating the discriminant: \[ = \frac{1 \pm \sqrt{1 + 324}}{18} = \frac{1 \pm \sqrt{325}}{18} \] ### Step 7: Find \( x^2 - \frac{1}{x^2} \) Now we need to find \( x^2 - \frac{1}{x^2} \): Using \( y = x^2 \): \[ x^2 - \frac{1}{x^2} = y - \frac{1}{y} \] Substituting \( y \) into the expression: \[ = \frac{y^2 - 1}{y} \] ### Final Step: Substitute back the value of \( y \) Using the value of \( y \) from the quadratic solution, we can calculate \( x^2 - \frac{1}{x^2} \).
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (SHORT ANSWER QUESTIONS-II)|48 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (LONG ANSWER QUESTIONS)|13 Videos
  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (VERY SHORT ANSWER QUESTIONS)|8 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

If cos ec theta=2x and cot theta=(2)/(x), find the value of 2(x^(2)-(1)/(x^(2)))

If 3x=cos ec theta and (3)/(x)=cot theta find the value of 3(x^(2)-(1)/(x^(2)))

If 3x=cos ec theta and (3)/(x)=cot theta, then find the value of 3(x^(2)-(1)/(x^(2)))

If 4x=cos ec theta and (8)/(x)=cot theta then find the value of 4(x^(2)-(4)/(x^(2)))

If cosec theta=3x and cot theta=3/x,(x ne 0) , then the value of 6(x^2-1/x^2) is: यदि cosec theta=3x और cot theta=3/x,(x ne 0) है, तो 6(x^2-1/x^2) का मान है:

If cosec theta=3x and cot theta=3/x, (x ne 0) then the value of 6(x^2- 1/x^2) is: यदि cosec theta=3x और cot theta=3/x है, जहाँ (x ne 0) है, तो 6(x^2- 1/x^2) मान क्या होगा ?

If x =p cosec theta and y =q cot theta , then the value of (x^2)/(p^2)- (y^2)/(q^2) is

cosec^2 theta - cot^2 theta = 1 +…..

If cosec theta - cottheta = (1)/(3) , then cosec theta + cot theta =