Home
Class 10
MATHS
If sin B = (12)/(13), then find cot B....

If sin B = `(12)/(13)`, then find cot B.

Text Solution

AI Generated Solution

The correct Answer is:
To find cot B given that sin B = \( \frac{12}{13} \), we can follow these steps: ### Step 1: Understand the definition of sine We know that: \[ \sin B = \frac{\text{Perpendicular}}{\text{Hypotenuse}} \] From the given information, we can identify: - Perpendicular (opposite side) = 12 - Hypotenuse = 13 ### Step 2: Use the Pythagorean theorem to find the base In a right triangle, the relationship between the sides is given by the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Perpendicular}^2 + \text{Base}^2 \] Let the base be denoted as \( b \). Then we can write: \[ 13^2 = 12^2 + b^2 \] Calculating the squares: \[ 169 = 144 + b^2 \] ### Step 3: Solve for the base Now, we can isolate \( b^2 \): \[ b^2 = 169 - 144 \] \[ b^2 = 25 \] Taking the square root of both sides: \[ b = 5 \] ### Step 4: Find cotangent The cotangent of an angle is defined as: \[ \cot B = \frac{\text{Base}}{\text{Perpendicular}} \] Substituting the values we found: \[ \cot B = \frac{5}{12} \] ### Final Answer Thus, the value of \( \cot B \) is: \[ \cot B = \frac{5}{12} \] ---
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGONOMETRY

    VK GLOBAL PUBLICATION|Exercise PROFICIENCY EXERCISE (LONG ANSWER QUESTIONS)|13 Videos
  • HEIGHT AND DISTANCE

    VK GLOBAL PUBLICATION|Exercise SELF ASSESSMENT TEST|11 Videos
  • MID TERM TEST PAPER

    VK GLOBAL PUBLICATION|Exercise SECTION -D|7 Videos

Similar Questions

Explore conceptually related problems

If sin A = 12/13 , then find the value of cos A.

If cosec theta = (13)/(12) , then find the values of cot theta and sin theta .

If in a !ABC sin A = 4/5 and sin B = 12/13 , then sin C =

If cos A=(12)/(13) then find sin A and tan A

If cosA=4/3 and cosB=12/13 , then find the values of cos(A+B) and sin(A-B) , where (3pi)/(2) lt A, B lt 2pi .

If A,B are acute angles and sinA = 3/5, cosB =12/13 then find cos(A+B)