Home
Class 12
MATHS
If log(3) x log(y) 3 log(2) y = 5 , then...

If `log_(3) x log_(y) 3 log_(2)` y = 5 , then x =

A

`3 y^(5)`

B

243

C

32

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_3 x \cdot \log_y 3 \cdot \log_2 y = 5 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ \log_3 x \cdot \log_y 3 \cdot \log_2 y = 5 \] ### Step 2: Isolate \( \log_3 x \) To isolate \( \log_3 x \), we can express it in terms of the other logarithms: \[ \log_3 x = \frac{5}{\log_y 3 \cdot \log_2 y} \] ### Step 3: Use the change of base formula Using the change of base formula, we can express \( \log_y 3 \) and \( \log_2 y \): \[ \log_y 3 = \frac{\log_3 3}{\log_3 y} = \frac{1}{\log_3 y} \] \[ \log_2 y = \frac{\log_3 y}{\log_3 2} \] ### Step 4: Substitute back into the equation Substituting these into our isolated equation for \( \log_3 x \): \[ \log_3 x = \frac{5}{\left(\frac{1}{\log_3 y}\right) \cdot \left(\frac{\log_3 y}{\log_3 2}\right)} = \frac{5 \cdot \log_3 2}{1} = 5 \log_3 2 \] ### Step 5: Exponentiate to solve for \( x \) Now we exponentiate both sides to solve for \( x \): \[ x = 3^{5 \log_3 2} \] ### Step 6: Simplify using properties of exponents Using the property \( a^{\log_a b} = b \): \[ x = 2^5 \] ### Step 7: Calculate \( 2^5 \) Calculating \( 2^5 \): \[ x = 32 \] Thus, the value of \( x \) is \( 32 \). ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If xy^(2) = 4 and log_(3) (log_(2) x) + log_(1//3) (log_(1//2) y)=1 , then x equals

1+log_(x)y=log_(2)y

If log_(2)(log_(2)(log_(3)x))=log_(3)(log_(3)(log_(2)y))=0 , then x-y is equal to :

If log_(5)x-log_(5)y = log_(5)4 + log_(5)2 and x - y = 7 , then = ______ .

If 3 +"log"_(5)x = 2"log"_(25) y , then x equals to