Home
Class 12
MATHS
If log(10) 2 = 0.030103, log(10) 50 =...

If `log_(10) 2 = 0.030103, log_(10) 50 = `

A

2.30103

B

2.698987

C

1.99897

D

0.69897

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \log_{10} 50 \) given that \( \log_{10} 2 = 0.030103 \), we can use the properties of logarithms. ### Step-by-Step Solution: 1. **Express 50 in terms of its factors**: \[ 50 = 5 \times 10 \] 2. **Use the logarithm property**: \[ \log_{10} 50 = \log_{10} (5 \times 10) = \log_{10} 5 + \log_{10} 10 \] 3. **Substitute the value of \( \log_{10} 10 \)**: \[ \log_{10} 10 = 1 \] So, we have: \[ \log_{10} 50 = \log_{10} 5 + 1 \] 4. **Express 5 in terms of 2**: \[ 5 = \frac{10}{2} \] Therefore: \[ \log_{10} 5 = \log_{10} \left(\frac{10}{2}\right) = \log_{10} 10 - \log_{10} 2 \] 5. **Substitute \( \log_{10} 10 \) and \( \log_{10} 2 \)**: \[ \log_{10} 5 = 1 - \log_{10} 2 = 1 - 0.030103 \] 6. **Calculate \( \log_{10} 5 \)**: \[ \log_{10} 5 = 1 - 0.030103 = 0.969897 \] 7. **Substitute back to find \( \log_{10} 50 \)**: \[ \log_{10} 50 = 0.969897 + 1 = 1.969897 \] ### Final Answer: \[ \log_{10} 50 \approx 1.969897 \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If log_(10) 2 = 0.3010 & log_(10) 3 = 0.4771 , find the value of log _(10) (2.25) .

If log_(10)2 = 0.3010 , then log_(10) 2000 =

If log_(10) 2 = 0.3010 " and " log_(10) 3 = 0.4771 , then find the number of integers in 6^(15)

If log_(10)2= 0.3010 , then log_(10)5 = _______

If log_(10) 2=0.3010 then log_2 10=

If log_(10)2 = 0.3010 and log_(10)3 = 0.4771 , then find the value log_(10) 135 .