Home
Class 12
MATHS
log(10) tan 1^(@) + log(10) tan 2^(@) +....

`log_(10) tan 1^(@) + log_(10) tan 2^(@) +....+ log_(10) tan 89^(@)` =

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If log_(10) tan 31^(@) . log_(10)tan 32^(@) ... log_(10)tan 60^(@) = log10a , then a = ______.

If log_(10)tan 19^(@) + log_(10) tan 21^(@) + log_(10) tan 37^(@) + log_(10) tan 45^(@) + log_(10) tan 69^(@) + log_(10) tan 71^(@) + log_(10) tan 53^(@) = log_(10) (x)/(2) , then x = ______.

The value of the expression log_(10) (tan 6^(@))+log_(10) (tan 12^(@))+log_(10) (tan 18^(@))+...+log_(10)(tan 84^(@)) is -

log_(10)tan 1^(@)+log_(10)tan2^(@)+…..+log_(10)tan89^(@) is equal to :

Prove that : log_(10)tan1^(@)*log_(10)tan2^(@)...log_(10)tan89^(@)=0

log_(10)tan1^(@).log_(10)tan2^(@)*log_(10)tan3^(@)........log_(10)tan50^(@)=0

The value of e^(log_(10)tan1^(0)+log_(10)tan2^(0)+...+log_(10)tan89^(@)) is (a)1 (b)e (c)1/e (d)none