Home
Class 12
MATHS
Given that logax=1/alpha, logbx=1/beta a...

Given that `log_ax=1/alpha, log_bx=1/beta` and `log_cx=1/gamma` Then find `log_(abc) x`

A

`alpha + beta + gamma`

B

`alpha beta gamma `

C

`(1)/(alpha + beta + gamma )`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

Given that log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta) and log_(c)x=(1)/(gamma) Then find log_(abc)x

if log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta),log_(c)x=y then log_(abc)x

Given log_(a) x=alpha, log _(b) x=beta, log_(c)x =gamma & log_(d) x=delta(x ne 1), a,b,c,d in R^(+)-{1}" then "log_(abcd)x then the value equal to:

Given that log_(p)x=alpha and log_(q)x=beta, then value of log_((p)/(q))x equals

If log_ax=alpha,log_bx=beta,log_c x=gamma and log_d x=delta ,xne1 and a,b,c, dne1 ,then log_(abcd) x equals

If log_x a,a^(x/2) and log_bx are in G.P. then find x.

Given log_(3)a=p=log_(b)c and log_(b)9=(2)/(p^(2)) and log_(9)((a^(4)b^(3))/(c))=alpha p^(3)+beta p^(2)+gamma p+delta(AA p=R-{0} then (alpha+beta+gamma+delta) equals to :

log_(alpha)4=gamma,log_(beta)alpha=-1 and log_((1)/(2))beta=-1 then the value of the expression 4 alpha^(2)+beta^(2)+gamma^(2) equals to

If log_(x)ax,log_(x)bx" and "log_(x)cx are in AP, where a, b, c and x, belong to (1,oo) , then a, b and c are in