Home
Class 12
MATHS
sum(r= 2)^(43) (1)/(log(r)n) =...

`sum_(r= 2)^(43) (1)/(log_(r)n)` =

A

`log_(n)` 43

B

`log_(43)`n

C

`log_(43!)`n

D

`(1)/(log_(43!)n)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

Show that sum_(r=2)^(43) frac{1}{log_(r)n} = log_n (43) !

If quad sum_(r=7)^(2400)log_(7)((r+1)/(r)),M=prod_(r=2)^(103)log_(r)(r+1) and N=sum_(r=2)^(2011)((1)/(log_(r)P)) where P=(1.2.34.......2011), then

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is

If sum_(r=1)^(n)t_(r)=sum_(k=1)^(n)sum_(j=1)^(k)sum_(i=1)^(j)2, then sum_(r=1)^(n)(1)/(t_(r))=

If sum_(r=1)^(n)a_(r)=(1)/(6)n(n+1)(n+2) for all n>=1 then lim_(n rarr oo)sum_(r=1)^(n)(1)/(a_(r)) is