Home
Class 12
MATHS
If log(7)2 = lambda, then the value of l...

If `log_(7)2 = lambda`, then the value of `log_(49) `(28) is

A

`(2 lambda + 1)`

B

`( 2 lambda + 3)`

C

`(1)/(2) ( 2 lambda + 1)`

D

`2 (2 lambda + 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \log_{49}(28) \) given that \( \log_{7}(2) = \lambda \). ### Step-by-Step Solution: 1. **Express the logarithm in terms of base 7**: \[ \log_{49}(28) = \frac{\log_{7}(28)}{\log_{7}(49)} \] Since \( 49 = 7^2 \), we have: \[ \log_{7}(49) = \log_{7}(7^2) = 2 \] Thus, we can rewrite: \[ \log_{49}(28) = \frac{\log_{7}(28)}{2} \] 2. **Break down \( \log_{7}(28) \)**: We can express \( 28 \) as \( 4 \times 7 \): \[ \log_{7}(28) = \log_{7}(4 \times 7) = \log_{7}(4) + \log_{7}(7) \] Since \( \log_{7}(7) = 1 \), we have: \[ \log_{7}(28) = \log_{7}(4) + 1 \] 3. **Express \( \log_{7}(4) \)**: We can express \( 4 \) as \( 2^2 \): \[ \log_{7}(4) = \log_{7}(2^2) = 2 \log_{7}(2) \] Given that \( \log_{7}(2) = \lambda \), we have: \[ \log_{7}(4) = 2\lambda \] 4. **Substitute back into the expression for \( \log_{7}(28) \)**: \[ \log_{7}(28) = 2\lambda + 1 \] 5. **Substitute \( \log_{7}(28) \) back into the expression for \( \log_{49}(28) \)**: \[ \log_{49}(28) = \frac{\log_{7}(28)}{2} = \frac{2\lambda + 1}{2} \] 6. **Simplify the expression**: \[ \log_{49}(28) = \lambda + \frac{1}{2} \] ### Final Answer: Thus, the value of \( \log_{49}(28) \) is: \[ \lambda + \frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If log_(2)(7)=a and log_(3)(2)=b, then the value of log_(14)(84) is

If log_(10)2=0.3010 and log_(10)7=0.8451 , then the value of log_(10) 2.8 is a. 0. 4471 b. 1. 4471 c. 2. 4471 d. none of these

If log_(y)x +log_(x)y = 7 , then the value of (log_(y)x)^(2) +(log_(x)y)^(2) , is

If log_(175)5x=log_(343)7x , then the value of log_(42)(x^(4)-2x^(2)+7) is

If log_(y)x+log_(x)y=7, then the value of (log_(y)x)^(2)+(log_(x)y)^(2), is