Home
Class 12
MATHS
The minimum value of 2^((log(6)3) cos^(2...

The minimum value of `2^((log_(6)3) cos^(2)x ) + 3^((log_(6)2)sin^(2)x)` is

A

`2^(log_(6) sqrt(2)) `

B

`3^(log_(6) sqrt(2))`

C

`2^(1 + log_(6) sqrt(3))`

D

`2 ^(1 - log_(6) sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \(2^{(\log_{6}3) \cos^{2} x} + 3^{(\log_{6}2) \sin^{2} x}\), we can proceed step by step as follows: ### Step 1: Define the expression Let: \[ f(x) = 2^{(\log_{6}3) \cos^{2} x} + 3^{(\log_{6}2) \sin^{2} x} \] ### Step 2: Apply the AM-GM Inequality Using the Arithmetic Mean-Geometric Mean (AM-GM) inequality, we can state that: \[ \frac{a + b}{2} \geq \sqrt{ab} \] for any non-negative \(a\) and \(b\). Here, let: \[ a = 2^{(\log_{6}3) \cos^{2} x} \quad \text{and} \quad b = 3^{(\log_{6}2) \sin^{2} x} \] Thus, we have: \[ f(x) \geq 2 \sqrt{a \cdot b} \] ### Step 3: Calculate \(ab\) Now, we calculate \(ab\): \[ ab = 2^{(\log_{6}3) \cos^{2} x} \cdot 3^{(\log_{6}2) \sin^{2} x} \] Using the property of logarithms, we can rewrite this as: \[ ab = 2^{(\log_{6}3) \cos^{2} x} \cdot 3^{(\log_{6}2) \sin^{2} x} = (2^{\log_{6}3})^{\cos^{2} x} \cdot (3^{\log_{6}2})^{\sin^{2} x} \] ### Step 4: Simplify using properties of logarithms Using the change of base formula, we can express: \[ 2^{\log_{6}3} = 3^{\log_{6}2} \] Thus, we can substitute: \[ ab = (3^{\log_{6}2})^{\cos^{2} x} \cdot (3^{\log_{6}2})^{\sin^{2} x} = (3^{\log_{6}2})^{\cos^{2} x + \sin^{2} x} \] Since \(\cos^{2} x + \sin^{2} x = 1\), we have: \[ ab = 3^{\log_{6}2} \] ### Step 5: Substitute back into the AM-GM inequality Now substituting back into the AM-GM inequality: \[ f(x) \geq 2 \sqrt{3^{\log_{6}2}} = 2 \cdot 3^{\frac{1}{2} \log_{6}2} \] ### Step 6: Simplify further Using the property of logarithms: \[ 3^{\frac{1}{2} \log_{6}2} = 2^{\log_{6}3} \] Thus: \[ f(x) \geq 2 \cdot 2^{\log_{6}3} = 2^{1 + \log_{6}3} \] ### Step 7: Final result The minimum value of the expression \(f(x)\) is: \[ \boxed{2^{1 + \log_{6}3}} \]
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

The minimum value of f(x)=2^(((log_(8)3)))cos^(2)x+3((log_(8)^(2)))sin^(2)x_( is )

The number of values of x satisfying 3^((log_(3)x)^(2))=2^((log_(2)x)^(2)) is equal to

The value of log_(sin^(2)x+cos^(4)x+2)(cos^(2)x+sin^(4)x+2) is equal to

log_(sin(x^(2)-8x+23))>(3)/(log_(2)(sin x))

For x in[1,16],M and m denotes maximum and minimum values of f(x)=log_(2)^(2)x-log_(2)x^(3)+3 respectively,then value of (2M-4m) is-

(2log_(6)3)/(log_(2)6)+(log_(6)2)^(2)+(1)/(log_(3)^(2)6) is a

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

The value of int _(sqrt ( log 2 )) ^(sqrt( log 3 )) (x sin x ^(2))/( sin x ^(2) + sin (log 6 -x ^(2)))dx is

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).