Home
Class 12
MATHS
If (log(5) K) (log(3) 5) (log(k) x ) = k...

If `(log_(5) K) (log_(3) 5) (log_(k) x ) = k `, then the value of x if k = 3 is

A

20

B

24

C

27

D

29

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\log_{5} K)(\log_{3} 5)(\log_{K} x) = K\) for \(x\) when \(K = 3\), we will follow these steps: ### Step 1: Substitute \(K = 3\) We start by substituting \(K\) with \(3\) in the equation: \[ (\log_{5} 3)(\log_{3} 5)(\log_{3} x) = 3 \] ### Step 2: Simplify \(\log_{5} 3\) and \(\log_{3} 5\) Using the change of base formula, we can express \(\log_{5} 3\) and \(\log_{3} 5\) in terms of natural logarithms or common logarithms: \[ \log_{5} 3 = \frac{\log 3}{\log 5} \] \[ \log_{3} 5 = \frac{\log 5}{\log 3} \] ### Step 3: Substitute back into the equation Now, we substitute these values back into the equation: \[ \left(\frac{\log 3}{\log 5}\right)\left(\frac{\log 5}{\log 3}\right)(\log_{3} x) = 3 \] ### Step 4: Simplify the product Notice that \(\frac{\log 3}{\log 5} \cdot \frac{\log 5}{\log 3} = 1\): \[ 1 \cdot (\log_{3} x) = 3 \] Thus, we have: \[ \log_{3} x = 3 \] ### Step 5: Convert to exponential form To find \(x\), we convert the logarithmic equation to its exponential form: \[ x = 3^3 \] ### Step 6: Calculate the value of \(x\) Calculating \(3^3\): \[ x = 27 \] ### Final Answer The value of \(x\) when \(K = 3\) is: \[ \boxed{27} \] ---
Promotional Banner

Topper's Solved these Questions

  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 2 : SINGLE OPTION CORRECT TYPE )|15 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE / WORKOUT (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|10 Videos
  • LIMITS AND CONTINUITY

    MTG-WBJEE|Exercise WE JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE)|2 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos

Similar Questions

Explore conceptually related problems

If log_(5) log_(5) log_(3) x = 0 , then value of x is

If 3^(log_(3)(5))+5^(log_(x)3) =8 then find the value of x.

If log_(2)log_(3)log_(4)log_(5)A=x , then the value of A is

if log_(k)x.log_(5)k=log_(x)5,k!=1,k>0, then find the value of x

If log_(k)xlog_(5)k=3 , then find the value of x.

If log (3+ 4 + k) = log 3 + log 4 + log k, then the value of k is

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

Let lambda=log_(5)log_(5)(3) . If 3^(k+5^(-lambda))=405 , then the value of k is :