Home
Class 12
MATHS
The least positive integer n such that [...

The least positive integer n such that `[{:(cos""(pi)/(4), sin""(pi)/(4)) ,(- sin ""(pi)/(4) , cos ""(pi)/(4)):}]^(n)`
is an identity matrix of order 2 is

A

4

B

8

C

12

D

16

Text Solution

AI Generated Solution

The correct Answer is:
To find the least positive integer \( n \) such that the matrix \[ A = \begin{pmatrix} \cos\left(\frac{\pi}{4}\right) & \sin\left(\frac{\pi}{4}\right) \\ -\sin\left(\frac{\pi}{4}\right) & \cos\left(\frac{\pi}{4}\right) \end{pmatrix}^n \] is an identity matrix of order 2, we will follow these steps: ### Step 1: Identify the Matrix Elements First, we calculate the values of \( \cos\left(\frac{\pi}{4}\right) \) and \( \sin\left(\frac{\pi}{4}\right) \): \[ \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}, \quad \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Thus, the matrix \( A \) becomes: \[ A = \begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix} \] ### Step 2: Matrix Power Calculation We know that the \( n \)-th power of a rotation matrix can be expressed as: \[ A^n = \begin{pmatrix} \cos(n\theta) & \sin(n\theta) \\ -\sin(n\theta) & \cos(n\theta) \end{pmatrix} \] where \( \theta = \frac{\pi}{4} \). Therefore, \[ A^n = \begin{pmatrix} \cos\left(n \cdot \frac{\pi}{4}\right) & \sin\left(n \cdot \frac{\pi}{4}\right) \\ -\sin\left(n \cdot \frac{\pi}{4}\right) & \cos\left(n \cdot \frac{\pi}{4}\right) \end{pmatrix} \] ### Step 3: Set Equal to Identity Matrix For \( A^n \) to be the identity matrix \( I_2 \), we need: \[ A^n = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] This gives us the following equations: 1. \( \cos\left(n \cdot \frac{\pi}{4}\right) = 1 \) 2. \( \sin\left(n \cdot \frac{\pi}{4}\right) = 0 \) ### Step 4: Solve the Equations From the first equation, \( \cos\left(n \cdot \frac{\pi}{4}\right) = 1 \) occurs when: \[ n \cdot \frac{\pi}{4} = 2k\pi \quad \text{for } k \in \mathbb{Z} \] This simplifies to: \[ n = 8k \] From the second equation, \( \sin\left(n \cdot \frac{\pi}{4}\right) = 0 \) occurs when: \[ n \cdot \frac{\pi}{4} = m\pi \quad \text{for } m \in \mathbb{Z} \] This simplifies to: \[ n = 4m \] ### Step 5: Find the Least Positive Integer \( n \) To satisfy both conditions, we need \( n \) to be a common multiple of 8 and 4. The least positive integer satisfying both equations is: \[ n = 8 \] ### Conclusion Thus, the least positive integer \( n \) such that \( A^n \) is the identity matrix of order 2 is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

sin ""(pi)/(4) cos ""(pi)/(12) - cos ""(pi)/(4) sin ""(pi)/(12) is equal to

cos((3pi)/4+x)-sin(pi/4-x)=?

Determine a positive integer n such that (pi)/(2)x^(n)sin xdx=(3)/(4)(pi^(2)-8)

cos(pi/4-A)-sin(pi/4+A)=0

sin (pi/2) = 2 sin(pi/4) cos (pi/4)

sec((pi)/(4))sin(3(pi)/(20))+sin((pi)/(10))-cos((pi)/(10)) equals

Prove that: cos((pi)/(4)-x)cos((pi)/(4)-y)-sin((pi)/(4)-x)sin((pi)/(4)-y)=sin(x+y)

Prove that: cos((pi)/(4)-A)cos((pi)/(4)-B)-sin((pi)/(4)-A)sin((pi)/(4)-B)=sin(A+B)