Home
Class 12
MATHS
If the polynomial f(x) = |{:((1+x)^(a)...

If the polynomial
`f(x) = |{:((1+x)^(a), (2+x)^(b),1),(1, (1 + x)^(a), (2 + x)^(b)),((2+x)^(b) , 1, (1+x)^(a)) :}|`
then the constant term of f(x) is

A

2 - 3.`2^(b) + 2^(3b)`

B

`2 + 3.2^(b) + 2^(3b)`

C

`2 + 3.2^(b)-2^(3b)`

D

`2- 3.2^(b)-2^(3b)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the constant term of the polynomial given by the determinant: \[ f(x) = \begin{vmatrix} (1+x)^{a} & (2+x)^{b} & 1 \\ 1 & (1+x)^{a} & (2+x)^{b} \\ (2+x)^{b} & 1 & (1+x)^{a} \end{vmatrix} \] we will evaluate the determinant by substituting \(x = 0\). ### Step 1: Substitute \(x = 0\) into the determinant When we substitute \(x = 0\), we get: \[ f(0) = \begin{vmatrix} (1+0)^{a} & (2+0)^{b} & 1 \\ 1 & (1+0)^{a} & (2+0)^{b} \\ (2+0)^{b} & 1 & (1+0)^{a} \end{vmatrix} \] This simplifies to: \[ f(0) = \begin{vmatrix} 1^{a} & 2^{b} & 1 \\ 1 & 1^{a} & 2^{b} \\ 2^{b} & 1 & 1^{a} \end{vmatrix} \] Since \(1^{a} = 1\) for any \(a\), we can further simplify this to: \[ f(0) = \begin{vmatrix} 1 & 2^{b} & 1 \\ 1 & 1 & 2^{b} \\ 2^{b} & 1 & 1 \end{vmatrix} \] ### Step 2: Calculate the determinant Now we will calculate the determinant using the first row: \[ f(0) = 1 \cdot \begin{vmatrix} 1 & 2^{b} \\ 1 & 1 \end{vmatrix} - 2^{b} \cdot \begin{vmatrix} 1 & 2^{b} \\ 2^{b} & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 1 \\ 2^{b} & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \(\begin{vmatrix} 1 & 2^{b} \\ 1 & 1 \end{vmatrix} = (1)(1) - (1)(2^{b}) = 1 - 2^{b}\) 2. \(\begin{vmatrix} 1 & 2^{b} \\ 2^{b} & 1 \end{vmatrix} = (1)(1) - (2^{b})(2^{b}) = 1 - 2^{2b}\) 3. \(\begin{vmatrix} 1 & 1 \\ 2^{b} & 1 \end{vmatrix} = (1)(1) - (1)(2^{b}) = 1 - 2^{b}\) Substituting these back into the determinant calculation: \[ f(0) = 1(1 - 2^{b}) - 2^{b}(1 - 2^{2b}) + 1(1 - 2^{b}) \] ### Step 3: Simplify the expression Now we simplify: \[ f(0) = (1 - 2^{b}) - 2^{b}(1 - 2^{2b}) + (1 - 2^{b}) \] Combining like terms: \[ f(0) = 2(1 - 2^{b}) - 2^{b}(1 - 2^{2b}) \] Expanding the second term: \[ = 2 - 2 \cdot 2^{b} - 2^{b} + 2^{3b} \] This simplifies to: \[ = 2 - 3 \cdot 2^{b} + 2^{3b} \] ### Final Answer Thus, the constant term of \(f(x)\) is: \[ \boxed{2 - 3 \cdot 2^{b} + 2^{3b}} \]
Promotional Banner

Topper's Solved these Questions

  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 3 : ONE OR MORE THAN ONE OPTION CORRECT TYPE )|3 Videos
  • MATRICES AND DETERMINANTS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS (CATEGORY 1 : SINGLE OPTION CORRECT TYPE )|24 Videos
  • LOGARITHMS

    MTG-WBJEE|Exercise WB JEE PREVIOUS YEARS QUESTIONS|10 Videos
  • MODEL TEST PAPER 1

    MTG-WBJEE|Exercise CATEGORY 3 : One or More than One Option Correct Type|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)= |{:((1+x)^(a),(1+2x)^(b),1),(1,(1+x)^(a),(1+2x)^(b)),((1+2x)^(b),1,(1+x)^(a)):}|, a,b being positive integers then

Consider the polynomial fucntion f(x) = |{:((1+x)^(a),,(1+2x)^(b),,1),(1,,(1+x)^(a),,(1+2x)^(b)),((1+2x)^(b),,1,,(1+x)^(a)):}| a,b being positive integers. The constant term in f(x) is

Consider the polynomial fucntion f(x) = |{:((1+x)^(2),,(1+2x)^(b),,1),(1,,(1+x)^(a),,(1+2x)^(b)),((1+2x)^(b),,1,,(1+x)^(a)):}| a,b being positive integers. the coefficient of x in f(x) is

If f(x)=det[[(1+x)^(a),(1+2x)^(b),11,(1+x)^(a),(1+2x)^(b)(1+2x)^(b),1,(1+x)^(a)(1+2x)^(b),1,(1+x)^(a) term and coefficient of x]]

If a^(2) + b^(2) + c^(2) = -2 and f(x) = |(1 + a^(2)x,(1 + b^(2))x,(1 + c^(2)) x),((1 + a^(2))x,1 + b^(2)x,(1 + c^(2))x),((1 + a^(2)) x,(1 + b^(2))x,1 + c^(2)x)| , then f(x) is a polynomial of degree

Find the range of (a) f(x) = x^(2) + 2x + 4 (b) f(x) = 1+x -x^(2)

If f(x)=(1+x)/(1-x) then f(x)*(f(x^(2)))/(1+(f(x))^(2))