Home
Class 12
MATHS
Which is larger : (99^(50)+100^(50)) or ...

Which is larger : `(99^(50)+100^(50))` or `(101)^(50)`.

Text Solution

Verified by Experts

Consider, ` (101)^(50) - (99)^(50) - (100)^(50)`
`= {(100)^(50)(1+0.01)^(50)-(1-0.01)^(50)-1)}`
`= (100)^(50){2.[C_(1)(0.001)+^(50)C_(3)(0.01)^(3)+...]-1}`
` = (100)^(50){2[^(50)C_(3)(0.01)^(3)+^(50)C_(5) (0.01)^(5) +…]}`
` ( 101)^(50) - {(99)^(50) + (100)^(50)}gt 0`
` (101)^(50) gt (99)^(50) + ( 100) ^(50)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Analytical & Descriptive Questions )|4 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Integer Answer Type Questions )|3 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Analytical & Descriptive Questions )|8 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos

Similar Questions

Explore conceptually related problems

Using binomial theorem,prove that (101)^(50)>100^(50)+99^(50).

50,000((10.5)/(100))^(2)

Using binomial theorem, prove that (101)^(50) gt(100^(50)+99^(50)).

The value of 99^(50) - 99.98^(50) + (99*98)/(1*2) (97)^(50) -…+ 99 is

The value of ((50),(0)) ((50),(1)) + ((50), (1)) ((50),(2)) +............+ ((50),(49))((50),(50)) is