Home
Class 12
MATHS
The sum sum(l=0)^(m) ({:(10),(i):}) ({:...

The sum `sum_(l=0)^(m) ({:(10),(i):}) ({:(20),(m - i):})`, where `({:(p),(q):})` = 0 if `p gt q`, is maximum when m is equal to

A

5

B

10

C

15

D

20

Text Solution

Verified by Experts

`underset(i=0)overset(m)sum{:((10),(i)):}{:((20),(m-i)):}` is the coefficient of `x^(m)` in the expansion of `(1+x)^(10)(x+1)^(20),`
`impliesunderset(i=0)overset(m)sum{:((10),(i)):}{:((20),(m-i)):}` is the coefficient of `x^(m)` in the expansion of `(1+x)^(30)`
i.e. `underset(i=0)overset(m)sum{:((10),(i)):}{:((20),(m-i)):}=""^(30)C_(m)={:((30),(m)):}" "...(i)`
and we know that, `{:((n),(r)):}` is maximum, when
Hence, `{:((30),(m)):}` is maximum when m = 15.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Numerical Value )|1 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Fill in the Blanks)|1 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Integer Answer Type Questions )|3 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos

Similar Questions

Explore conceptually related problems

The sum underset(i=0)overset(3m)(sum)((20),(3m-i)) , where ((p),(q))=0 if p lt q is maximum then m is_______.

The sum sum_(i=0)^(m)""^(10)C_(i)xx""^(20)C_(m-i)("where " ""^(p)C_(q)=0" if "pltq) is maximum, when m is

If f(m) = sum_(i=0)^m ((30),(30-i)) ((20),(m-i)) where ((p),(q)) = pCq, then (A) maximum value of f(m) is 50C 25 (B) f(0)+f(1) +...+f(50) =2^50 (C) f(m) is always divisible by 50 (1<=m<=49) (D)sum_(m=0)^(50) (f(m))^2=100C50

The sum sum_(r=0)^(m) ""^(10)C_(r) xx""^(20)C_(m -r) is maximum ltbr. When m=

Sum of products P,Q,R,S (i.e. P+Q+R+S) is equal to:

For nonnegative integers s and r , let {:((s),(r)):} = {:(s!)/((r! (s-r)!),(" 0"):} {:(" if "r le g),(" if "gts):} For positive integers m and n , let g (m,n) = sum_(p=0)^(m+n) (f(m,n,p))/{:((n+p),("p")):} where for nay nonnegative integer p , f(m,n,p) = sum_(i=0)^(p){:((n+i),(i)),((n+i),(p)),((p+n),(p-i)) Then which of the following statements is/are TRUE ?

The sum of (p+q)^(th)" and "(p-q)^(th) terms of an AP is equal to

If the sum of the series sum_(m=1)^(oo)sum_(n-1)^(oo)(m^(2)n)/(3^(m)(n.3^(m)+m.3^(n))) can be expressed as (p)/(q) where p and q are co-prime number, then (q-3p) is equal to