Home
Class 12
MATHS
If Cr stands for nCr, then the sum of ...

If `C_r` stands for `nC_r`, then the sum of the series `(2(n/2)!(n/2)!)/(n !)[C_0^2-2C_1^2+3C_2^2-........+(-1)^n(n+1)C_n^2]` ,where n is an even positive integer, is

A

`(-1)^(n//2) (n + 2)`

B

`(-1)^(n) (n + 1)`

C

`(-1)^(n//2) (n + 1)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A

We have, `C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-4C_(3)^(2)+...+(-1)^(n)(n+1)C_(n)^(2)`
`=[C_(0)^(2)-C_(1)^(2)+C_(2)^(2)-C_(3)^(2)+...+(-1)^(n)C_(n)^(2)]+[C_(1)^(2)-2C_(2)^(2)+3C_(3)^(2)-...+(-1)^(n)nC_(n)^(2)]`
`=(-1)^(n//2)(n!)/(((n)/(2))!((n)/(2))!)-(-1)^((n)/(2)-1)(n)/(2)(n!)/(((n)/(2))!((n)/(2))!)`
`=(-1)^(n//2)(n!)/(((n)/(2))!((n)/(2))!)(1+(n)/(2))`
`:.(2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-...+(-1)^(r)(n+1)C_(n)^(2)]`
`=(2((n)/(2))!((n)/(2))!)/(n!)(-1)^(n//2)(n!)/(((n)/(2))!((n)/(2))!)((n+2))/(2)=(-1)^(n//2)(n+2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Numerical Value )|1 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 2 Properties of Binomial Coefficent Objective Questions I (Only one correct option) (Fill in the Blanks)|1 Videos
  • BINOMIAL THEOREM

    IIT JEE PREVIOUS YEAR|Exercise Topic 1 Binomial Expansion and General Term ( Objective Questions I) (Integer Answer Type Questions )|3 Videos
  • AREA

    IIT JEE PREVIOUS YEAR|Exercise AREA USING INTEGRATION|55 Videos
  • CIRCLE

    IIT JEE PREVIOUS YEAR|Exercise Topic 5 Integer Answer type Question|1 Videos

Similar Questions

Explore conceptually related problems

If C_(r) stands for ""^(n)C_(r) , then the sum of the series (2((n)/(2))!((n)/(2))!)/(n!)[C_(0)^(2)-2C_(1)^(2)+3C_(2)^(2)-...+(-1)^(n)(n+1)C_(n)^(2)] , where n is an even positive integers, is:

If n ge 2 is a positive integer, then the sum of the series ""^(n+1)C_2 + 2(""^2C_2+ ""3C_2 + ""4C_2 +...+ ""nC_2) is:

Prove that sum_(r=1)^(k)(-3)^(r-1)C(3n,2r-1)=0 where k=(3n)/(2) and n is an even positive integer.

The sum of the series 1+(1)/(2) ""^(n) C_1 + (1)/(3) ""^(n) C_(2) + ….+ (1)/(n+1) ""^(n) C_(n) is equal to

The value of hat r(2n+1)C_(0)^(2)+^(2n+1)C_(1)^(2)+^(2n+1)C_(2)^(2)+....+^(2n+1)C_(n)^(2) is equal to

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

Find the sum : 1/2*""^(n)C_0+""^(n)C_1+2*""^(n)C_2+2^2*""^nC_3+...+2^(n-1)*""^(n)C_n .