Home
Class 12
MATHS
If cosec^(-1)x+cosec^(-1)y+cosec^(-1)z...

If
`cosec^(-1)x+cosec^(-1)y+cosec^(-1)z=-(3pi)/(2),then x/y+y/z+z/x=`

A

1

B

`-3`

C

3

D

`3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \csc^{-1}x + \csc^{-1}y + \csc^{-1}z = -\frac{3\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation using sine We know that \( \csc^{-1}x = \sin^{-1}\left(\frac{1}{x}\right) \). Therefore, we can rewrite the equation as: \[ \sin^{-1}\left(\frac{1}{x}\right) + \sin^{-1}\left(\frac{1}{y}\right) + \sin^{-1}\left(\frac{1}{z}\right) = -\frac{3\pi}{2} \] ### Step 2: Use the property of sine inverse The sine function is periodic, and \( \sin^{-1}(a) + \sin^{-1}(b) + \sin^{-1}(c) \) can be transformed using the identity: \[ \sin^{-1}(a) + \sin^{-1}(b) = \sin^{-1}\left(a\sqrt{1-b^2} + b\sqrt{1-a^2}\right) \] However, since we have a negative angle, we can express it as: \[ \sin^{-1}\left(\frac{1}{x}\right) + \sin^{-1}\left(\frac{1}{y}\right) + \sin^{-1}\left(\frac{1}{z}\right) = \sin^{-1}\left(-1\right) \] This implies that: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = -1 \] ### Step 3: Use the identity for the sum of reciprocals From the above step, we can write: \[ \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = -1 \] This can be rearranged to: \[ \frac{yz + zx + xy}{xyz} = -1 \] Thus, we have: \[ yz + zx + xy = -xyz \] ### Step 4: Find the required expression We need to find \( \frac{x}{y} + \frac{y}{z} + \frac{z}{x} \). This can be rewritten as: \[ \frac{x^2z + y^2x + z^2y}{xyz} \] Using the earlier result \( yz + zx + xy = -xyz \), we can substitute: \[ \frac{x^2z + y^2x + z^2y}{xyz} = -\frac{xyz}{xyz} = -1 \] ### Final Result Thus, the value of \( \frac{x}{y} + \frac{y}{z} + \frac{z}{x} \) is: \[ \boxed{-1} \]

To solve the equation \( \csc^{-1}x + \csc^{-1}y + \csc^{-1}z = -\frac{3\pi}{2} \), we will follow these steps: ### Step 1: Rewrite the equation using sine We know that \( \csc^{-1}x = \sin^{-1}\left(\frac{1}{x}\right) \). Therefore, we can rewrite the equation as: \[ \sin^{-1}\left(\frac{1}{x}\right) + \sin^{-1}\left(\frac{1}{y}\right) + \sin^{-1}\left(\frac{1}{z}\right) = -\frac{3\pi}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If cos^(-1)x +cos^(-1)y +cos^(-1)z =3pi then x+y+z is :

If csc^(-1)x+csc^(-1)y+csc^(-1)z=-(3 pi)/(2) find the value of (x)/(y)+(y)/(z)+(z)/(x)

If : cos^(-1)x+cos^(-1)y+cos^(-1)z=3pi, " then :" x (y+z)+y(z+x)+z(x+y)=

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sec^(-1)(2) +"cosec"^(-1) (y) = pi/2 , then find y .

If sec^(-1)x=cosec^(-1) y then cos^(-1)(1/x)+cos^(-1)(1/y) =

If x,y,z in[-1,1] such that cos^(-1)x+cos^(1)y+cos^(-1)z=3 pi, then find the values of (1)xy+yz+zy and (2)x(y+z)+y(z+x)+z(x+y)

If x,y,z in[-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=-(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

If y="cosec"^(-1) (2x+1),"then "dy/dx=

If cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y+z= 3/2, then prove that x=y=z

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. If cosec^(-1)x+cosec^(-1)y+cosec^(-1)z=-(3pi)/(2),then x/y+y/z+z/x=

    Text Solution

    |

  2. If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) then x equal

    Text Solution

    |

  3. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  4. If tan theta + tan((pi)/(3)+theta) + tan((-pi)/(3)+theta) = ktan 3 the...

    Text Solution

    |

  5. If 1/2 le x le 1 then sin^(-1) (3x-4x^(3)) equals

    Text Solution

    |

  6. The value of tan (2 "tan"^(-1)(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  9. If A=2tan^(-1)(2sqrt(2)-1)a n dB=3sin^(-1)(1/3)+sin^(-1)(3/5), then wh...

    Text Solution

    |

  10. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  12. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  13. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  14. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  15. If a(1),a(2),a(3),….a(n) is a.p with common difference d then tan{tan...

    Text Solution

    |

  16. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  17. Which of the following angles is greater? theta1=sin^(-1)(4/5)+sin^(-...

    Text Solution

    |

  18. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  19. Solve tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1)"\ "8/(31)

    Text Solution

    |

  20. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  21. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |