Home
Class 12
MATHS
The value of cot^(-1)(-1)+cosec^(-1)(-...

The value of
`cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2)` is

A

`(5pi)/(6)`

B

`(2pi)/(3)`

C

`(7pi)/(6)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cot^{-1}(-1) + \csc^{-1}(-\sqrt{2}) + \sec^{-1}(2) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \cot^{-1}(-1) \) The cotangent function is negative in the second and fourth quadrants. The angle whose cotangent is -1 is \( \frac{3\pi}{4} \) (in the second quadrant). \[ \cot^{-1}(-1) = \frac{3\pi}{4} \] ### Step 2: Evaluate \( \csc^{-1}(-\sqrt{2}) \) We know that \( \csc^{-1}(x) \) is the angle whose cosecant is \( x \). Therefore, we need to find the angle \( \theta \) such that \( \csc(\theta) = -\sqrt{2} \). This implies that \( \sin(\theta) = -\frac{1}{\sqrt{2}} \), which corresponds to \( \theta = -\frac{\pi}{4} \) (in the fourth quadrant). Thus, we can express this as: \[ \csc^{-1}(-\sqrt{2}) = -\frac{\pi}{4} \] ### Step 3: Evaluate \( \sec^{-1}(2) \) The secant function is the reciprocal of the cosine function. Therefore, we need to find the angle \( \phi \) such that \( \sec(\phi) = 2 \). This implies that \( \cos(\phi) = \frac{1}{2} \), which corresponds to \( \phi = \frac{\pi}{3} \) (in the first quadrant). Thus, we have: \[ \sec^{-1}(2) = \frac{\pi}{3} \] ### Step 4: Combine the results Now we can combine all the evaluated results: \[ \cot^{-1}(-1) + \csc^{-1}(-\sqrt{2}) + \sec^{-1}(2) = \frac{3\pi}{4} - \frac{\pi}{4} + \frac{\pi}{3} \] ### Step 5: Simplify the expression First, combine \( \frac{3\pi}{4} - \frac{\pi}{4} \): \[ \frac{3\pi}{4} - \frac{\pi}{4} = \frac{2\pi}{4} = \frac{\pi}{2} \] Now, we need to add \( \frac{\pi}{2} + \frac{\pi}{3} \). To do this, we need a common denominator, which is 6: \[ \frac{\pi}{2} = \frac{3\pi}{6}, \quad \frac{\pi}{3} = \frac{2\pi}{6} \] Now add them: \[ \frac{3\pi}{6} + \frac{2\pi}{6} = \frac{5\pi}{6} \] ### Final Answer Thus, the value of \( \cot^{-1}(-1) + \csc^{-1}(-\sqrt{2}) + \sec^{-1}(2) \) is: \[ \frac{5\pi}{6} \] ---

To solve the expression \( \cot^{-1}(-1) + \csc^{-1}(-\sqrt{2}) + \sec^{-1}(2) \), we will evaluate each term step by step. ### Step 1: Evaluate \( \cot^{-1}(-1) \) The cotangent function is negative in the second and fourth quadrants. The angle whose cotangent is -1 is \( \frac{3\pi}{4} \) (in the second quadrant). \[ \cot^{-1}(-1) = \frac{3\pi}{4} ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Find the value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+sec^(-1)(-sqrt2) .

cot^(-1)3+cosec^(-1)sqrt(5)=

cosec^(-1)(-sqrt(2))+cot^(-1)(sqrt(3))=

The value of cot^(-1)(-sqrt3)+cosec^(-1)(2)+tan^(-1)(sqrt3) is

For the principal values,evaluate the following: cot^(-1)(-1)+csc^(-1)(-sqrt(2))+secs^(-1)(2)cot^(-1)(-sqrt(3))+tan^(-1)(1)sec^(-1)((2)/(sqrt(3)))

Find the principal value of cot^(-1)(-sqrt3)+2cosec^(-1)(-2)+cos^(-1)(-sqrt3/2)

The principal value of sec^(-1)(sqrt(2)) + cosec^(-1)(2) is

Find the principal value of cos^(-1)(sqrt3/2)+cot^(-1)(1/sqrt3)+cosec^(-1)(-2)

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

    Text Solution

    |

  2. If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) then x equal

    Text Solution

    |

  3. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  4. If tan theta + tan((pi)/(3)+theta) + tan((-pi)/(3)+theta) = ktan 3 the...

    Text Solution

    |

  5. If 1/2 le x le 1 then sin^(-1) (3x-4x^(3)) equals

    Text Solution

    |

  6. The value of tan (2 "tan"^(-1)(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  9. If A=2tan^(-1)(2sqrt(2)-1)a n dB=3sin^(-1)(1/3)+sin^(-1)(3/5), then wh...

    Text Solution

    |

  10. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  12. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  13. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  14. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  15. If a(1),a(2),a(3),….a(n) is a.p with common difference d then tan{tan...

    Text Solution

    |

  16. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  17. Which of the following angles is greater? theta1=sin^(-1)(4/5)+sin^(-...

    Text Solution

    |

  18. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  19. Solve tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1)"\ "8/(31)

    Text Solution

    |

  20. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  21. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |