Home
Class 12
MATHS
The value of tan^(2)(sec^(-1)2)+cot^(2...

The value of
`tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)` is

A

5

B

10

C

11

D

15

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \tan^2(\sec^{-1} 2) + \cot^2(\csc^{-1} 3) \), we will follow these steps: ### Step 1: Find \( \tan^2(\sec^{-1} 2) \) Let \( \theta = \sec^{-1}(2) \). By definition, this means that \( \sec(\theta) = 2 \). Using the identity \( \sec(\theta) = \frac{1}{\cos(\theta)} \), we have: \[ \cos(\theta) = \frac{1}{2} \] Now, we can find \( \sin(\theta) \) using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] Substituting \( \cos(\theta) \): \[ \sin^2(\theta) + \left(\frac{1}{2}\right)^2 = 1 \] \[ \sin^2(\theta) + \frac{1}{4} = 1 \] \[ \sin^2(\theta) = 1 - \frac{1}{4} = \frac{3}{4} \] Now, we can find \( \tan(\theta) \): \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} = \frac{\sqrt{\frac{3}{4}}}{\frac{1}{2}} = \frac{\sqrt{3}}{2} \cdot 2 = \sqrt{3} \] Thus, we have: \[ \tan^2(\theta) = (\sqrt{3})^2 = 3 \] ### Step 2: Find \( \cot^2(\csc^{-1} 3) \) Let \( \phi = \csc^{-1}(3) \). By definition, this means that \( \csc(\phi) = 3 \). Using the identity \( \csc(\phi) = \frac{1}{\sin(\phi)} \), we have: \[ \sin(\phi) = \frac{1}{3} \] Now, we can find \( \cos(\phi) \) using the Pythagorean identity: \[ \sin^2(\phi) + \cos^2(\phi) = 1 \] Substituting \( \sin(\phi) \): \[ \left(\frac{1}{3}\right)^2 + \cos^2(\phi) = 1 \] \[ \frac{1}{9} + \cos^2(\phi) = 1 \] \[ \cos^2(\phi) = 1 - \frac{1}{9} = \frac{8}{9} \] Now, we can find \( \cot(\phi) \): \[ \cot(\phi) = \frac{\cos(\phi)}{\sin(\phi)} = \frac{\sqrt{\frac{8}{9}}}{\frac{1}{3}} = \frac{\sqrt{8}}{3} \cdot 3 = \sqrt{8} = 2\sqrt{2} \] Thus, we have: \[ \cot^2(\phi) = (2\sqrt{2})^2 = 8 \] ### Step 3: Combine the results Now we can combine the results from Step 1 and Step 2: \[ \tan^2(\sec^{-1} 2) + \cot^2(\csc^{-1} 3) = 3 + 8 = 11 \] ### Final Answer The value of \( \tan^2(\sec^{-1} 2) + \cot^2(\csc^{-1} 3) \) is \( \boxed{11} \).

To solve the problem \( \tan^2(\sec^{-1} 2) + \cot^2(\csc^{-1} 3) \), we will follow these steps: ### Step 1: Find \( \tan^2(\sec^{-1} 2) \) Let \( \theta = \sec^{-1}(2) \). By definition, this means that \( \sec(\theta) = 2 \). Using the identity \( \sec(\theta) = \frac{1}{\cos(\theta)} \), we have: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section I - Solved Mcqs|71 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Evaluate : tan^(2) ("sec"^(-1)3) + cot^(2) ("cosec^(-1) 4) .

Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11 . Statement -2 :tan^(2)theta+sec^(2)theta=1=cot^(2)theta+cosec^(2)theta

The value of sec^(2)(tan^(-1)2)+cosec^(2)(cot^(-1)3) is

Evaluate the following : tan^(2) ( sec^(-1) 2) + cot^(2) ( cosec^(-1) 3) .

The value of tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ is equal to: tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ iका मान बराबर है :

If o^(@)ltAlt90^(@) , then the value of tan^(2)A+cot^(2)A-sec^(2)A"cosec"^(2)A is

sec^(2)(tan^(-1)4)+cosec^(2)(cot^(-1)3) =

The numerical value of sec^(2)(tan^(-1)2) + cosec^(2)(cot^(-1)3) =______.

The value of cot^(-1)(-1)+cosec^(-1)(-sqrt(2))+sec^(-1)(2) is

sec^(2)(tan^(-1)2) +"cosec"^(2)(cot^(-1)3)=

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Chapter Test
  1. The value of tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3) is

    Text Solution

    |

  2. If sin^(-1)(1-x) -2sin^(-1)x=(pi)/(2) then x equal

    Text Solution

    |

  3. If (tan^(-1)x)^2+(cot^(-1)x)^2=(5pi^2)/8, then find xdot

    Text Solution

    |

  4. If tan theta + tan((pi)/(3)+theta) + tan((-pi)/(3)+theta) = ktan 3 the...

    Text Solution

    |

  5. If 1/2 le x le 1 then sin^(-1) (3x-4x^(3)) equals

    Text Solution

    |

  6. The value of tan (2 "tan"^(-1)(1)/(5)-(pi)/(4)) is

    Text Solution

    |

  7. If tan(x+y)=33, and x= tan^(-1)3, then: y=

    Text Solution

    |

  8. Two angles of a triangle are cot^-1 2 and cot^-1 3, then the third ang...

    Text Solution

    |

  9. If A=2tan^(-1)(2sqrt(2)-1)a n dB=3sin^(-1)(1/3)+sin^(-1)(3/5), then wh...

    Text Solution

    |

  10. Let a, b and c be positive real numbers. Then prove that tan^(-1) sqrt...

    Text Solution

    |

  11. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) the value of x^(100)+y^(10...

    Text Solution

    |

  12. The value of (alpha^3)/2cos e c^2(1/2tan^(-1)alpha/beta)+(beta^3)/2sec...

    Text Solution

    |

  13. If a,b are positive quantitis and if a(1)=(a+b)/(2), b(1)=sqrt(a(1)b) ...

    Text Solution

    |

  14. tan""(2pi)/(5)-tan""(pi)/(15)-sqrt3tan""(2pi)/(5)tan""(pi)/(15) is equ...

    Text Solution

    |

  15. If a(1),a(2),a(3),….a(n) is a.p with common difference d then tan{tan...

    Text Solution

    |

  16. If x=sin(2tan^(- 1)2), y=sin(1/2tan^(- 1)(4/3)) , then -

    Text Solution

    |

  17. Which of the following angles is greater? theta1=sin^(-1)(4/5)+sin^(-...

    Text Solution

    |

  18. The value of cos[1/2 cos^(-1){cos(sin^(-1)((sqrt63)/(8)))}] is

    Text Solution

    |

  19. Solve tan^(-1)("x"+1)+tan^(-1)("x"-1)=tan^(-1)"\ "8/(31)

    Text Solution

    |

  20. If alpha = sin^(-1)(sqrt(3)/2)+sin^(-1)(1/3) , beta =cos ^(-1)(sqrt(3)...

    Text Solution

    |

  21. The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

    Text Solution

    |