Home
Class 12
MATHS
The number of solution of sin{sin^(-1)...

The number of solution of
`sin{sin^(-1)(log_(1//2)x)}+2|cos{sin^(-1)(x/2-3/2)}|=0` is

A

1

B

2

C

3

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sin\left(\sin^{-1}(\log_{1/2} x)\right) + 2 \left| \cos\left(\sin^{-1}\left(\frac{x}{2} - \frac{3}{2}\right)\right) \right| = 0, \] we will follow these steps: ### Step 1: Determine the range of \(\log_{1/2} x\) The function \(\sin^{-1}(y)\) is defined for \(y\) in the range \([-1, 1]\). Therefore, we need to find the values of \(x\) such that: \[ -1 \leq \log_{1/2} x \leq 1. \] ### Step 2: Solve the inequalities for \(\log_{1/2} x\) The logarithm \(\log_{1/2} x\) can be rewritten using the change of base formula: \[ \log_{1/2} x = -\log_2 x. \] Thus, the inequalities become: \[ -1 \leq -\log_2 x \leq 1. \] This simplifies to: \[ 1 \geq \log_2 x \geq -1. \] ### Step 3: Convert logarithmic inequalities to exponential form Converting these inequalities back to exponential form gives us: 1. From \(\log_2 x \leq 1\), we have \(x \leq 2\). 2. From \(\log_2 x \geq -1\), we have \(x \geq \frac{1}{2}\). Thus, we have: \[ \frac{1}{2} \leq x \leq 2. \] ### Step 4: Determine the range of \(\frac{x}{2} - \frac{3}{2}\) Next, we analyze the expression \(\frac{x}{2} - \frac{3}{2}\): \[ -1 \leq \frac{x}{2} - \frac{3}{2} \leq 1. \] ### Step 5: Solve the inequalities for \(\frac{x}{2} - \frac{3}{2}\) 1. From \(\frac{x}{2} - \frac{3}{2} \geq -1\): \[ \frac{x}{2} \geq \frac{1}{2} \implies x \geq 1. \] 2. From \(\frac{x}{2} - \frac{3}{2} \leq 1\): \[ \frac{x}{2} \leq \frac{5}{2} \implies x \leq 5. \] ### Step 6: Combine the ranges Now we combine the ranges obtained from both parts: 1. From \(\frac{1}{2} \leq x \leq 2\). 2. From \(1 \leq x \leq 5\). The intersection of these ranges gives: \[ 1 \leq x \leq 2. \] ### Step 7: Analyze the original equation Now we analyze the original equation: \[ \sin\left(\sin^{-1}(\log_{1/2} x)\right) + 2 \left| \cos\left(\sin^{-1}\left(\frac{x}{2} - \frac{3}{2}\right)\right) \right| = 0. \] ### Step 8: Simplify the equation Using the property of inverse sine, we have: \[ \sin\left(\sin^{-1}(\log_{1/2} x)\right) = \log_{1/2} x. \] Thus, the equation simplifies to: \[ \log_{1/2} x + 2 \left| \cos\left(\sin^{-1}\left(\frac{x}{2} - \frac{3}{2}\right)\right) \right| = 0. \] ### Step 9: Analyze the cosine term The term \(\cos\left(\sin^{-1}\left(\frac{x}{2} - \frac{3}{2}\right)\right)\) can be expressed as: \[ \cos\left(\sin^{-1}(y)\right) = \sqrt{1 - y^2}, \] where \(y = \frac{x}{2} - \frac{3}{2}\). ### Step 10: Find the number of solutions The left-hand side of the equation must equal zero. Therefore, we need to check if there exists an \(x\) in the range \(1 \leq x \leq 2\) such that: \[ \log_{1/2} x + 2\sqrt{1 - \left(\frac{x}{2} - \frac{3}{2}\right)^2} = 0. \] After analyzing the behavior of the functions involved, we find that there is exactly one solution in the interval \(1 \leq x \leq 2\). ### Final Answer Thus, the number of solutions to the equation is: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Number of solutions of the equation 2(sin^(-1)x^2)-sin^(-1)x-6=0 is

The number of solution of the equation 2sin^(-1)((2x)/(1+x^(2)))-pi x^(3)=0 is equal to

The number of solution of the equation sin^(3)x cos x+sin^(2)x cos^(2)x+cos^(3)x sin x+1=0 in the interval [0, 2pi] is equal to

The number of solutions of the equation |sin((pi)/(2)(1-x))+cos((pi)/(2)(1-x))| = sqrt(|log_(e)|x|^(3)+1|) is /are

The number of solution of sin^(3)x cos x + sin^(2)x cos^(2)x+sinx cos^(3)x=1 in [0,2pi) is k-2 then k is ______

The solution of the inequality log_((1)/(2))sin^(-1)x>log_((1)/(2))cos^(-1)x is

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  2. The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^...

    Text Solution

    |

  3. The number of solution of sin{sin^(-1)(log(1//2)x)}+2|cos{sin^(-1)(x...

    Text Solution

    |

  4. The value of "tan"(sin^(-1)("cos"(sin^(-1)x)))"tan"(cos^(-1)(sin(cos^(...

    Text Solution

    |

  5. Value of x satisfying tan(sec^(- 1)x)=sin(cos^(- 1)(1/(sqrt(5))))

    Text Solution

    |

  6. Exhaustive set of values of parameter 'a' so that sin^(-1)x-tan^(-1)x=...

    Text Solution

    |

  7. If alpha le sin^(-1)x+cos^(1)x +tan^(-1)xlebeta then

    Text Solution

    |

  8. If -1lexle0 then sin^(-1)x equals

    Text Solution

    |

  9. If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

    Text Solution

    |

  10. The value of tan^(-1)1/3+tan^(-1)1/7+tan^(-1)1/13+..+tan^(-1)(1)/(n^(...

    Text Solution

    |

  11. If 0lexle1 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))...

    Text Solution

    |

  12. If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2)...

    Text Solution

    |

  13. If 0lexle1 then sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^...

    Text Solution

    |

  14. If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x...

    Text Solution

    |

  15. If |cos^-1((1-x^2)/(1+x^2))| < pi/3, then x belongs to the interval

    Text Solution

    |

  16. The value of cos [tan^-1 {sin (cot^-1 x)}] is

    Text Solution

    |

  17. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  18. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  19. tan{(pi)/(4)+1/2cos^(-1)alpha}+tan{(pi)/(4)-1/2cos^(-1)alpha} alpha ...

    Text Solution

    |

  20. The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) i...

    Text Solution

    |