Home
Class 12
MATHS
If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/...

If `tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi` then x =

A

2

B

3

C

4

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\left(\frac{x+1}{x-1}\right) + \tan^{-1}\left(\frac{x-1}{x}\right) = \tan^{-1}(-7) + \pi, \] we can use the formula for the sum of inverse tangents: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a+b}{1-ab}\right) + n\pi, \] where \( n \) is an integer, provided that \( ab < 1 \). ### Step 1: Identify \( a \) and \( b \) Let \[ a = \frac{x+1}{x-1} \quad \text{and} \quad b = \frac{x-1}{x}. \] ### Step 2: Check the product \( ab \) Calculate \( ab \): \[ ab = \left(\frac{x+1}{x-1}\right) \left(\frac{x-1}{x}\right) = \frac{(x+1)(x-1)}{(x-1)x} = \frac{x^2 - 1}{x(x-1)}. \] ### Step 3: Apply the sum formula Using the sum formula, we have: \[ \tan^{-1}\left(\frac{a+b}{1-ab}\right) = \tan^{-1}(-7). \] ### Step 4: Calculate \( a + b \) Calculate \( a + b \): \[ a + b = \frac{x+1}{x-1} + \frac{x-1}{x} = \frac{(x+1)x + (x-1)(x-1)}{(x-1)x} = \frac{x^2 + x + x^2 - 2x + 1}{(x-1)x} = \frac{2x^2 - x + 1}{(x-1)x}. \] ### Step 5: Calculate \( 1 - ab \) Calculate \( 1 - ab \): \[ 1 - ab = 1 - \frac{x^2 - 1}{x(x-1)} = \frac{x(x-1) - (x^2 - 1)}{x(x-1)} = \frac{x^2 - x - x^2 + 1}{x(x-1)} = \frac{1 - x}{x(x-1)}. \] ### Step 6: Set up the equation Now we can set up the equation: \[ \tan^{-1}\left(\frac{\frac{2x^2 - x + 1}{(x-1)x}}{\frac{1 - x}{x(x-1)}}\right) = \tan^{-1}(-7). \] This simplifies to: \[ \frac{2x^2 - x + 1}{1 - x} = -7. \] ### Step 7: Solve for \( x \) Cross-multiply: \[ 2x^2 - x + 1 = -7(1 - x) \implies 2x^2 - x + 1 = -7 + 7x. \] Rearranging gives: \[ 2x^2 - 8x + 8 = 0. \] ### Step 8: Factor the quadratic Dividing through by 2: \[ x^2 - 4x + 4 = 0 \implies (x - 2)^2 = 0. \] ### Step 9: Solve for \( x \) Thus, \[ x - 2 = 0 \implies x = 2. \] ### Final Answer The value of \( x \) is \[ \boxed{2}. \] ---

To solve the equation \[ \tan^{-1}\left(\frac{x+1}{x-1}\right) + \tan^{-1}\left(\frac{x-1}{x}\right) = \tan^{-1}(-7) + \pi, \] we can use the formula for the sum of inverse tangents: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)

Solve tan^(-1) ((x+1)/(x-1)) + tan^(-1) ((x-1)/x) = tan^(-1)(-7)

If tan^(-1)(x+1)/(x-1)+tan^(-1)(x-1)/x=tan^(-1)(-7) , then the value of x is (a) 0 (b) -2 (c) 1 (d) 2

Solve : tan^(-1)((x+1)/(x-1)) + tan^(-1)( (x-1)/(x)) = pi + tan^(-1) (-7)

If: tan^(-1)((x-1)/(x+1))+ tan^(-1)((2x-1)/(2x+1)) = tan^(-1) (23/36) . Then: x=

Solve tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)

The root of the equation tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36)) is

Solve: tan^(-1)((x-1)/(x+1))+tan^(-1)((2x-1)/(2x+1))=tan^(-1)((23)/(36))

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. If alpha le sin^(-1)x+cos^(1)x +tan^(-1)xlebeta then

    Text Solution

    |

  2. If -1lexle0 then sin^(-1)x equals

    Text Solution

    |

  3. If tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/(x))=tan^(-1)(-7)+pi then x =

    Text Solution

    |

  4. The value of tan^(-1)1/3+tan^(-1)1/7+tan^(-1)1/13+..+tan^(-1)(1)/(n^(...

    Text Solution

    |

  5. If 0lexle1 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2))...

    Text Solution

    |

  6. If -1lexle0 then tan{1/2sin^(-1)((2x)/(1+x^(2)))+1/2cos^(-1)((1-x^(2)...

    Text Solution

    |

  7. If 0lexle1 then sin{tan^(-1)((1-x^(2))/(2x))+cos^(-1)((1-x^(2))/(1+x^...

    Text Solution

    |

  8. If -1lexle0 then sin{tan^(-1)((1-x^(2))/(2x))-cos^(-1)((1-x^(2))/(1+x...

    Text Solution

    |

  9. If |cos^-1((1-x^2)/(1+x^2))| < pi/3, then x belongs to the interval

    Text Solution

    |

  10. The value of cos [tan^-1 {sin (cot^-1 x)}] is

    Text Solution

    |

  11. Find the value of sin^(-1)(cos(sin^(-1)x))+cos^(-1)(sin(cos^(-1)x))

    Text Solution

    |

  12. If (sin^(-1)x)^(2)+(cos^(-1)x)^(2)=(5pi^(2))/(8) then x =

    Text Solution

    |

  13. tan{(pi)/(4)+1/2cos^(-1)alpha}+tan{(pi)/(4)-1/2cos^(-1)alpha} alpha ...

    Text Solution

    |

  14. The solution set of the equation cos^(-1)x-sin^(-1)x=sin^(-1)(1-x) i...

    Text Solution

    |

  15. The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is

    Text Solution

    |

  16. If sin^-1(sin 5)gtx^(2)-4x then

    Text Solution

    |

  17. If cos^(-1)(cos 4)gt3x^(2)-4x then

    Text Solution

    |

  18. The number of real solution (x,y) where |y|=sinx,y=cos^(-1)(cosx),-2pi...

    Text Solution

    |

  19. If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

    Text Solution

    |

  20. tan(sec^(-1)x )=sin(cos^(-1)(1/sqrt5))

    Text Solution

    |