Home
Class 12
MATHS
If u=cot^(-1)sqrt(cos theta) -tan^(-1)sq...

If `u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta)` then sin u=

A

`tan theta //2`

B

`tan^(2) theta//2`

C

`cot theta//2`

D

`cot^(2) theta//2`

Text Solution

AI Generated Solution

To solve the problem, we need to find \( \sin u \) where \( u = \cot^{-1}(\sqrt{\cos \theta}) - \tan^{-1}(\sqrt{\cos \theta}) \). ### Step-by-Step Solution: 1. **Express \( u \) in terms of \( \tan^{-1} \)**: \[ u = \cot^{-1}(\sqrt{\cos \theta}) - \tan^{-1}(\sqrt{\cos \theta}) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If u=cot^(-1)[sqrt(cos2 theta)]-tan^(-1)[sqrt(cos2 theta)] then show that,cos ecu=cot^(2)theta

If u = cot^(-1) sqrt(cos 2theta) - tan^(-1) sqrt(cos 2theta) prove that sin u = tan^(2) theta . .

Knowledge Check

  • Let u = cot^(-1) sqrt(cos 2 theta) - tan^(-1) sqrt( cos 2 theta) , then the value of sin u is

    A
    `cos 2 theta `
    B
    `sin 2 theta`
    C
    `tan^(2) theta`
    D
    `cot^(2) theta`
  • If u = cot^(-1)sqrt(tan alpha) - tan^(-1) sqrt(tan alpha) , then tan(pi/4-u/2) =

    A
    `sqrt(an alpha)`
    B
    `sqrt(cot alpha)`
    C
    `tan alpha`
    D
    `cot alpha`
  • Similar Questions

    Explore conceptually related problems

    If sin theta+sqrt(3)cos theta>=1 then

    tan(2tan^(-1)sqrt((1+cos theta)/(1-cos theta)))+tan theta=0

    cos theta - sqrt3 sin theta = 1

    sqrt((1+cos theta)/(1-cos theta))=csc theta+cot theta

    Find sin^(-1)(sin theta),cos^(-1)(cos theta),tan^(-1)(tan theta),cot^(-1)(cot theta) for theta epsilon((5pi)/2,3pi)

    Find sin^(-1)(sin theta)*cos^(-1)(cos theta),tan^(-1)(tan theta),cot^(-1)(cot theta) for theta in((5 pi)/(2),3 pi)