Home
Class 12
MATHS
If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then...

If `sin^(-1)x+sin^(-1)y+sin^(-1)z=pi` then the value of `xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))`

A

2xyz

B

`x^(2)+y^(2)+z^(2)`

C

`xy+yz+zx`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi \] ### Step 1: Define Variables Let: - \( a = \sin^{-1} x \) - \( b = \sin^{-1} y \) - \( c = \sin^{-1} z \) From the equation, we can rewrite it as: \[ a + b + c = \pi \] ### Step 2: Use Sine Identity Using the sine identity, we know that: \[ \sin(a + b + c) = \sin \pi = 0 \] Using the sine addition formula, we have: \[ \sin(a + b + c) = \sin a \cos(b + c) + \cos a \sin(b + c) \] Since \( b + c = \pi - a \), we can rewrite \( \sin(b + c) \) as: \[ \sin(b + c) = \sin(\pi - a) = \sin a \] Thus, we can express the equation as: \[ \sin a \cos(b + c) + \cos a \sin a = 0 \] ### Step 3: Simplify the Equation This simplifies to: \[ \sin a (\cos(b + c) + 1) = 0 \] Since \( \sin a \neq 0 \) (as \( a \) is not \( 0 \) or \( \pi \)), we have: \[ \cos(b + c) + 1 = 0 \implies \cos(b + c) = -1 \] This implies that \( b + c = \pi \). ### Step 4: Find Values of Sine and Cosine From the definitions: - \( x = \sin a \) - \( y = \sin b \) - \( z = \sin c \) Now, we also have: \[ \cos a = \sqrt{1 - x^2}, \quad \cos b = \sqrt{1 - y^2}, \quad \cos c = \sqrt{1 - z^2} \] ### Step 5: Evaluate the Expression We need to find the value of: \[ x \sqrt{1 - x^2} + y \sqrt{1 - y^2} + z \sqrt{1 - z^2} \] Using the identity for sine and cosine, we can express this as: \[ x \sqrt{1 - x^2} + y \sqrt{1 - y^2} + z \sqrt{1 - z^2 = \sin a \cos a + \sin b \cos b + \sin c \cos c \] ### Step 6: Use the Identity From the identity: \[ \sin 2a + \sin 2b + \sin 2c = 4 \sin a \sin b \sin c \] We can express: \[ \sin 2a = 2 \sin a \cos a \] Thus, we have: \[ 2(\sin a \cos a + \sin b \cos b + \sin c \cos c) = 4 \sin a \sin b \sin c \] ### Step 7: Final Result This means: \[ \sin a \cos a + \sin b \cos b + \sin c \cos c = 2 \sin a \sin b \sin c \] Substituting back, we get: \[ x \sqrt{1 - x^2} + y \sqrt{1 - y^2} + z \sqrt{1 - z^2 = 2xyz \] Thus, the final answer is: \[ \boxed{2xyz} \]

To solve the problem, we start with the given equation: \[ \sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi \] ### Step 1: Define Variables Let: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

if,sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi prove that x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi, prove that: x sqrt(1-x^(2))+y sqrt(1-y^(2))+z sqrt(1-z^(2))=2xyz

If sin^(-1)x + sin^(-1)y + sin^(-1)z =pi , prove that xsqrt(1 - x^(2)) + y sqrt(1 -y^(2)) + z sqrt(1-z^(2))= 2xyz .

If sin^(-1) x+sin^(-1)y+sin^(-1)z=(3pi)/(2) , then

If sin^(-1) x + sin^(-1) y + sin^(-1) z = pi" , prove that " x sqrt(1-x^(2) ) + y sqrt(1 - y^(2)) + zsqrt( 1 - z^(2)) = 2 xyz .

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2 , then write the value of x+y+z .

Q.if sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), then

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2), find the value of x^(2)+y^(2)+z^(2)

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. tan(sec^(-1)x )=sin(cos^(-1)(1/sqrt5))

    Text Solution

    |

  2. Number of integral solutions of the equation 2 sin^-1sqrt(x^2-x +1 )+ ...

    Text Solution

    |

  3. If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(s...

    Text Solution

    |

  4. If f(x) =cos^(-1)x+cos^(-1){(x/2+1/2sqrt(3-3x^(2)))} then f(2/3) equ...

    Text Solution

    |

  5. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  6. If alpha is the only real root of the equation x^3 + bx^2 + cx + 1 = ...

    Text Solution

    |

  7. If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) t...

    Text Solution

    |

  8. If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

    Text Solution

    |

  9. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then the value of xsqrt(1-x^(2))+y...

    Text Solution

    |

  10. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  11. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  12. If cot(cos^(-1)x)=sec{tan^(-1)((a)/sqrt(b^(2)-a^(2)))} then x equals

    Text Solution

    |

  13. tan^(-1)(C(1)x-y)/(c(1)+c(3)c(2))+..+tan^(-1)(1)/(c(n)) is equal top

    Text Solution

    |

  14. If 0ltxlt1 then sqrt(1+x^(2))[{x cos (cot^(-1)x)+sin(cot^(-1)x}^(2)-1...

    Text Solution

    |

  15. Sigma(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t then tan t is equal to

    Text Solution

    |

  16. Let (x,y)be such that sin^(-1)(ax)+cos^(-1)y+cos^(-1)(bxy)=(pi)/(2) ...

    Text Solution

    |

  17. Let f:[0,4pi]->[0,pi] be defined by f(x)=cos^-1(cos x). The number ...

    Text Solution

    |

  18. If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n(1),n(2),n(3...

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  20. Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)), where |x|<1/(sqrt(3))....

    Text Solution

    |