Home
Class 12
MATHS
If cot(cos^(-1)x)=sec{tan^(-1)((a)/sqrt(...

If `cot(cos^(-1)x)=sec{tan^(-1)((a)/sqrt(b^(2)-a^(2)))}` then x equals

A

`(b)/sqr(2b^(2)-a^(2))`

B

`(a)/sqr(2b^(2)-a^(2))`

C

`sqrt(b^(2)-a^(2))/(a)`

D

`b/sqrt(2b^2-a^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cot(\cos^{-1} x) = \sec\left(\tan^{-1}\left(\frac{a}{\sqrt{b^2 - a^2}}\right)\right) \), we will follow these steps: ### Step 1: Define the angle for \( \cos^{-1} x \) Let \( \theta = \cos^{-1} x \). Then, from the definition of cosine: \[ \cos \theta = x \] This implies that in a right triangle, the adjacent side is \( x \) and the hypotenuse is \( 1 \). ### Step 2: Find the opposite side Using the Pythagorean theorem: \[ \text{Opposite side} = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - x^2} \] ### Step 3: Find \( \cot(\theta) \) The cotangent of the angle \( \theta \) is given by: \[ \cot \theta = \frac{\text{Adjacent}}{\text{Opposite}} = \frac{x}{\sqrt{1 - x^2}} \] ### Step 4: Define the angle for \( \tan^{-1} \left(\frac{a}{\sqrt{b^2 - a^2}}\right) \) Let \( \phi = \tan^{-1}\left(\frac{a}{\sqrt{b^2 - a^2}}\right) \). Then: \[ \tan \phi = \frac{a}{\sqrt{b^2 - a^2}} \] ### Step 5: Find \( \sec(\phi) \) Using the definition of secant: \[ \sec \phi = \frac{1}{\cos \phi} \] To find \( \cos \phi \), we can use the identity: \[ \sec^2 \phi = 1 + \tan^2 \phi \implies \sec^2 \phi = 1 + \left(\frac{a}{\sqrt{b^2 - a^2}}\right)^2 = 1 + \frac{a^2}{b^2 - a^2} \] This simplifies to: \[ \sec^2 \phi = \frac{b^2}{b^2 - a^2} \] Thus, \[ \sec \phi = \frac{b}{\sqrt{b^2 - a^2}} \] ### Step 6: Set the two expressions equal Now we have: \[ \cot(\cos^{-1} x) = \sec\left(\tan^{-1}\left(\frac{a}{\sqrt{b^2 - a^2}}\right)\right) \] This gives us: \[ \frac{x}{\sqrt{1 - x^2}} = \frac{b}{\sqrt{b^2 - a^2}} \] ### Step 7: Cross-multiply and simplify Cross-multiplying gives: \[ x \sqrt{b^2 - a^2} = b \sqrt{1 - x^2} \] Squaring both sides results in: \[ x^2 (b^2 - a^2) = b^2 (1 - x^2) \] Expanding and rearranging yields: \[ x^2 b^2 - x^2 a^2 = b^2 - b^2 x^2 \] Combining like terms: \[ x^2 (b^2 + a^2) = b^2 \] ### Step 8: Solve for \( x^2 \) Thus, we have: \[ x^2 = \frac{b^2}{b^2 + a^2} \] Taking the square root gives: \[ x = \frac{b}{\sqrt{b^2 + a^2}} \] ### Final Answer So the value of \( x \) is: \[ \boxed{\frac{b}{\sqrt{b^2 + a^2}}} \]

To solve the equation \( \cot(\cos^{-1} x) = \sec\left(\tan^{-1}\left(\frac{a}{\sqrt{b^2 - a^2}}\right)\right) \), we will follow these steps: ### Step 1: Define the angle for \( \cos^{-1} x \) Let \( \theta = \cos^{-1} x \). Then, from the definition of cosine: \[ \cos \theta = x \] This implies that in a right triangle, the adjacent side is \( x \) and the hypotenuse is \( 1 \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Exercise|72 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(log_(cot x)tan x)(log_(tan x)cot x)^(-1)+tan^(-1)((x)/(sqrt(4-x^(2)))) then f'(0) is equal to

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=

If x=sec^(2)(tan^(-1)2)+cos ec^(2)(cot^(-1)3) and y=tan^(-1)((sqrt(1+tan^(2))8-1)/(tan8)) then 15x^(2)+4y^(2) is equal to 3434+lambda where lambda=

If tan(cos^(-1)x)=sin(cot^(-1)1/2) then x is equal to- a.1/sqrt(5)b.2/sqrt(5)c.3/sqrt(5)d.sqrt(5)/3

Prove that: csc(tan^(-1)(cos(cot^(-1)(sec(sin^(-1)a)))))=sqrt(3-a^(2)) where a in[0,1]

Prove that tan^(-1) x =sec^(-1) sqrt(1+x^2)

If 0

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Section I - Solved Mcqs
  1. tan(sec^(-1)x )=sin(cos^(-1)(1/sqrt5))

    Text Solution

    |

  2. Number of integral solutions of the equation 2 sin^-1sqrt(x^2-x +1 )+ ...

    Text Solution

    |

  3. If alpha, beta and gamma are the three angles with alpha = 2tan^(-1)(s...

    Text Solution

    |

  4. If f(x) =cos^(-1)x+cos^(-1){(x/2+1/2sqrt(3-3x^(2)))} then f(2/3) equ...

    Text Solution

    |

  5. The trigonometric equation sin^(-1)x=2sin^(-1)a has a solution for all...

    Text Solution

    |

  6. If alpha is the only real root of the equation x^3 + bx^2 + cx + 1 = ...

    Text Solution

    |

  7. If tan^(-1)(a/x)+tan^(-1)(b/x)+tan^(-1)(c /x)+tan^(-1)(d/x)=(pi)/(2) t...

    Text Solution

    |

  8. If u=cot^(-1)sqrt(cos theta) -tan^(-1)sqrt(cos theta) then sin u=

    Text Solution

    |

  9. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi then the value of xsqrt(1-x^(2))+y...

    Text Solution

    |

  10. if cos^(- 1)sqrt(p)+cos^(- 1)sqrt(1-p)+cos^(- 1)sqrt(1-q)=(3pi)/4 ,the...

    Text Solution

    |

  11. The solution set of the equation sin^(-1)x=2 tan^(-1)x is

    Text Solution

    |

  12. If cot(cos^(-1)x)=sec{tan^(-1)((a)/sqrt(b^(2)-a^(2)))} then x equals

    Text Solution

    |

  13. tan^(-1)(C(1)x-y)/(c(1)+c(3)c(2))+..+tan^(-1)(1)/(c(n)) is equal top

    Text Solution

    |

  14. If 0ltxlt1 then sqrt(1+x^(2))[{x cos (cot^(-1)x)+sin(cot^(-1)x}^(2)-1...

    Text Solution

    |

  15. Sigma(r=1)^(infty) tan^(-1)(1)/(2r^(2))=t then tan t is equal to

    Text Solution

    |

  16. Let (x,y)be such that sin^(-1)(ax)+cos^(-1)y+cos^(-1)(bxy)=(pi)/(2) ...

    Text Solution

    |

  17. Let f:[0,4pi]->[0,pi] be defined by f(x)=cos^-1(cos x). The number ...

    Text Solution

    |

  18. If (sin^(-1)x+sin^(-1)y)(sin^(-1)Z+sin^(-1)w)=pi^(2) and n(1),n(2),n(3...

    Text Solution

    |

  19. If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi,t h e nx^4+y^2+z^4+4x^2y^2z^2=K(x^...

    Text Solution

    |

  20. Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)), where |x|<1/(sqrt(3))....

    Text Solution

    |