Home
Class 12
MATHS
If x lt 0 then tan^(-1)(1/x) equals...

If `x lt 0` then `tan^(-1)(1/x)` equals

A

`cot^(-1)x`

B

`-cot^(-1)x`

C

`-pi + cot^(-1)x`

D

`-pi -cot^(-1) x `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \tan^{-1}\left(\frac{1}{x}\right) \) given that \( x < 0 \). ### Step-by-Step Solution: 1. **Understanding the Inverse Tangent Function**: We start with the expression \( \tan^{-1}\left(\frac{1}{x}\right) \). We know that the tangent function is the reciprocal of the cotangent function. Therefore, we can express this as: \[ \tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}(x) \] 2. **Using the Property of Cotangent**: Since \( x < 0 \), we need to consider the properties of the cotangent function. The cotangent function has the following property: \[ \cot^{-1}(-x) = \pi - \cot^{-1}(x) \] This is useful because \( x \) is negative, so we can express \( \cot^{-1}(x) \) in terms of a positive value. 3. **Substituting the Negative Value**: We can rewrite our expression using the property mentioned: \[ \tan^{-1}\left(\frac{1}{x}\right) = \cot^{-1}(x) = \pi - \cot^{-1}(-x) \] Since \( x < 0 \), we can replace \( x \) with \(-x\): \[ \tan^{-1}\left(\frac{1}{x}\right) = \pi - \cot^{-1}(-x) \] 4. **Final Expression**: Therefore, we can conclude that: \[ \tan^{-1}\left(\frac{1}{x}\right) = \pi - \cot^{-1}(-x) \] However, since we are looking for the expression in terms of \( x \), we can also express it as: \[ \tan^{-1}\left(\frac{1}{x}\right) = -\cot^{-1}(x) \] Thus, the final answer can be represented as: \[ \tan^{-1}\left(\frac{1}{x}\right) = -\cot^{-1}(x) \] ### Conclusion: The final result is: \[ \tan^{-1}\left(\frac{1}{x}\right) = \pi - \cot^{-1}(-x) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

If -1lt x lt 0 then tan^(-1) x equals

If -1 lt x lt 0 then sin^(-1) x equals-

If 1 lt x lt 1 then tan^(-1) (2x)/(1-x^(2)) equals

If x<0, then tan ^(-1)x is equal to

If -1 lt x lt 0 , then cos^(-1) x is equal to

If cos^(-1) (x) = alpha, (0 lt x lt 1) " and " sin^(-1) (2x sqrt(1 - x^2)) + sec^(-1)(1/(2x^2 - 1)) = (2pi)/(3) , than tan^(-1) (2x) equals

If xlt0 , then value of tan^(-1)(x)+tan^(-1)(1/x) is equal to

If x lt -(1)/sqrt(3) , then tan^(-1)(3x-x^(3))/(1-3x^(2)) equals