Home
Class 12
MATHS
If sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) ...

If `sin^(-1)(2xsqrt(1-x^(2)))-2 sin^(-1) x=0` then x belongs to the interval

A

`[-1,1]`

B

`[-1//sqrt(2),1sqrt(2)]`

C

`[-1,-1//sqrt(2)]`

D

`[1//sqrt(2),1]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

if cos^(-1)x>sin^(-1)x, then x belongs to the interval

Show that sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x

If x^(2)-2x+sin^(2)theta=0 then x belongs to

If f(x)=sin^(-1)(2xsqrt(1-x^(2))), x in [-1,1] . Then

int(1)/(sin^(-1)xsqrt(1-x^(2)))dx

The formula sin^(-1){2xsqrt(1-x^(2))}=2 sin^(-1) x is true for all values of x lying in the interval

If log_(0.04)(x-1)>=log_(0.2)(x-1) then x belongs to the interval

If log_(0.04)(x-1)gelog_(0.2)(x-1) then x belongs to the interval

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=

sin^(-1)(xsqrt(x)),0 le x le 1