Home
Class 12
MATHS
4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal...

`4 tan^(-1)(1/5)-tan^(-1)(1/239)` is equal o

A

`pi`

B

`pi//2`

C

`pi//3`

D

`pi//4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( 4 \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right) \), we will use the properties of inverse trigonometric functions and some algebraic manipulations. ### Step-by-step Solution: 1. **Rewrite the Expression**: \[ 4 \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right) = 2 \left( 2 \tan^{-1}\left(\frac{1}{5}\right) \right) - \tan^{-1}\left(\frac{1}{239}\right) \] 2. **Use the Double Angle Formula**: The double angle formula for tangent states: \[ \tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)} \] Let \( \theta = \tan^{-1}\left(\frac{1}{5}\right) \), then: \[ \tan(2\theta) = \frac{2 \cdot \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2} = \frac{\frac{2}{5}}{1 - \frac{1}{25}} = \frac{\frac{2}{5}}{\frac{24}{25}} = \frac{2 \cdot 25}{5 \cdot 24} = \frac{10}{24} = \frac{5}{12} \] Thus, we have: \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \tan^{-1}\left(\frac{5}{12}\right) \] 3. **Substitute Back**: Now substitute back into the expression: \[ 4 \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right) = 2 \tan^{-1}\left(\frac{5}{12}\right) - \tan^{-1}\left(\frac{1}{239}\right) \] 4. **Use the Formula for the Difference of Arctangents**: The formula for the difference of two arctangents is: \[ \tan^{-1}(x) - \tan^{-1}(y) = \tan^{-1}\left(\frac{x - y}{1 + xy}\right) \] Here, let \( x = \frac{5}{12} \) and \( y = \frac{1}{239} \): \[ \tan^{-1}\left(\frac{\frac{5}{12} - \frac{1}{239}}{1 + \frac{5}{12} \cdot \frac{1}{239}}\right) \] 5. **Calculate the Numerator**: Find a common denominator for the numerator: \[ \frac{5}{12} - \frac{1}{239} = \frac{5 \cdot 239 - 12 \cdot 1}{12 \cdot 239} = \frac{1195 - 12}{12 \cdot 239} = \frac{1183}{12 \cdot 239} \] 6. **Calculate the Denominator**: Calculate the denominator: \[ 1 + \frac{5}{12} \cdot \frac{1}{239} = 1 + \frac{5}{12 \cdot 239} = \frac{12 \cdot 239 + 5}{12 \cdot 239} = \frac{2868 + 5}{12 \cdot 239} = \frac{2873}{12 \cdot 239} \] 7. **Combine the Results**: Now combine the results: \[ \tan^{-1}\left(\frac{\frac{1183}{12 \cdot 239}}{\frac{2873}{12 \cdot 239}}\right) = \tan^{-1}\left(\frac{1183}{2873}\right) \] 8. **Final Result**: Since \( \tan^{-1}(1) = \frac{\pi}{4} \), we find that: \[ 4 \tan^{-1}\left(\frac{1}{5}\right) - \tan^{-1}\left(\frac{1}{239}\right) = \tan^{-1}(1) = \frac{\pi}{4} \] ### Conclusion: Thus, the final answer is: \[ \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(1/2)+tan^(-1)(1/3) is equal to

tan^(-1)((1)/(4))+tan^(-1)((2)/(9)) is equal to :

"sin"^(-1)(4)/(5)+2"tan"^(-1)(1)/(3) is equal to

(1)/(2)tan^(-1)((12)/(5)) is equal to

What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to?

What is tan^(-1)((1)/(2))+tan^(-1)((1)/(3)) equal to ?

Find the value of 4tan^(-1)((1)/(5))-tan^(-1)((1)/(239))