Home
Class 12
MATHS
cos^(-1)(15/17)+2 tan^(-1)(1/5)=...

`cos^(-1)(15/17)+2 tan^(-1)(1/5)=`

A

`(pi)/(2)`

B

`cos^(-1)(171)/(221)`

C

`(pi)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos^{-1}\left(\frac{15}{17}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) \), we will follow these steps: ### Step 1: Convert \( 2 \tan^{-1}\left(\frac{1}{5}\right) \) to \( \cos^{-1} \) We can use the identity: \[ 2 \tan^{-1}(x) = \cos^{-1\left(\frac{1 - x^2}{1 + x^2}\right)} \] Here, \( x = \frac{1}{5} \). ### Step 2: Calculate \( 1 - x^2 \) and \( 1 + x^2 \) Calculating \( 1 - \left(\frac{1}{5}\right)^2 \) and \( 1 + \left(\frac{1}{5}\right)^2 \): \[ 1 - \left(\frac{1}{5}\right)^2 = 1 - \frac{1}{25} = \frac{24}{25} \] \[ 1 + \left(\frac{1}{5}\right)^2 = 1 + \frac{1}{25} = \frac{26}{25} \] ### Step 3: Substitute into the identity Now we substitute these values into the identity: \[ 2 \tan^{-1}\left(\frac{1}{5}\right) = \cos^{-1}\left(\frac{\frac{24}{25}}{\frac{26}{25}}\right) = \cos^{-1}\left(\frac{24}{26}\right) = \cos^{-1}\left(\frac{12}{13}\right) \] ### Step 4: Combine the two \( \cos^{-1} \) terms Now we have: \[ \cos^{-1}\left(\frac{15}{17}\right) + \cos^{-1}\left(\frac{12}{13}\right) \] We can use the identity: \[ \cos^{-1}(x) + \cos^{-1}(y) = \cos^{-1}(xy + \sqrt{(1-x^2)(1-y^2)}) \] ### Step 5: Calculate \( xy \) Let \( x = \frac{15}{17} \) and \( y = \frac{12}{13} \): \[ xy = \frac{15}{17} \cdot \frac{12}{13} = \frac{180}{221} \] ### Step 6: Calculate \( \sqrt{(1-x^2)(1-y^2)} \) Now we calculate \( 1 - x^2 \) and \( 1 - y^2 \): \[ 1 - \left(\frac{15}{17}\right)^2 = 1 - \frac{225}{289} = \frac{64}{289} \] \[ 1 - \left(\frac{12}{13}\right)^2 = 1 - \frac{144}{169} = \frac{25}{169} \] Now calculate: \[ \sqrt{(1-x^2)(1-y^2)} = \sqrt{\frac{64}{289} \cdot \frac{25}{169}} = \sqrt{\frac{1600}{48961}} = \frac{40}{221} \] ### Step 7: Combine results Now we can combine the results: \[ xy + \sqrt{(1-x^2)(1-y^2)} = \frac{180}{221} + \frac{40}{221} = \frac{220}{221} \] ### Step 8: Final result Thus, we have: \[ \cos^{-1}\left(\frac{15}{17}\right) + 2 \tan^{-1}\left(\frac{1}{5}\right) = \cos^{-1}\left(\frac{220}{221}\right) \] ### Conclusion The final answer is: \[ \cos^{-1}\left(\frac{220}{221}\right) \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)(3/5)+cos^(-1)(15/17)=cos^(-1)(36/85)

Which of the following is/are correct? tan[cos^(-1)(4)/(5)+tan^(-1)(2)/(3)]=(17)/(6)cos[tan^(-1)(1)/(3)+tan^(-1)(1)/(2)]=(1)/(sqrt(2))cos2tan^(-1)((1)/(3))+cos(tan^(-1)2sqrt(2))=(14)/(15)cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=-(2sqrt(6))/(6)

Principal value of : 2cos^(-1)(1)+5tan^(-1)(1) is :

tan^(-1)(1/3)+tan^(-1)(1/5)=(1)/(2)cos^(-1)(33/65)

tan(cos^(-1)((3)/(5))+tan^(-1)((1)/(4)))

cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

Show that 2 tan^(-1)(1/2)+tan^(-1) (1/7)=tan^(-1)(31/17)

sin[cos^(-1)(3/5)+tan^(-1)2]=

Prove the following results: tan(cos^(-1)((4)/(5))+tan^(-1)((2)/(3)))=(17)/(6)

Prove the following results: tan((cos^(-1)4)/(5)+(tan^(-1)2)/(3))=(17)/(6)(ii)cos((sin^(-1)3)/(5)+(cot^(-1)3)/(2))=(6)/(5sqrt(13))

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. If sin^(-1)(x/5)+cose c^(-1)(5/4)=pi/2 then a value of x is:

    Text Solution

    |

  2. find the value of 2tan^-1 (1/3)+tan^-1( 1/7)

    Text Solution

    |

  3. cos^(-1)(15/17)+2 tan^(-1)(1/5)=

    Text Solution

    |

  4. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  5. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  6. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  7. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  8. If x + y + z = xyz and x, y, z gt 0, then find the value of tan^(-1) x...

    Text Solution

    |

  9. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  10. If x1,x2, x3, x4 are the roots of the equation x^4-x^3 sin2 beta+ x^2....

    Text Solution

    |

  11. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  12. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  13. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  14. The value of tan[1/2cos^(-1).sqrt5/3] is

    Text Solution

    |

  15. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  16. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  17. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  18. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-...

    Text Solution

    |

  19. If A=tan^-1((xsqrt3)/(2k-x)) and B=tan^-1((2x-k)/(ksqrt3)) then find t...

    Text Solution

    |

  20. If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x then x equals

    Text Solution

    |