Home
Class 12
MATHS
sin^(-1)(3/5)+tan^(-1)(1/7)=...

`sin^(-1)(3/5)+tan^(-1)(1/7)=`

A

`(pi)/(4)`

B

`(pi)/(2)`

C

`cos^(-1)(4/5)`

D

`pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sin^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{7} \right) \), we can follow these steps: ### Step 1: Let \( \theta = \sin^{-1} \left( \frac{3}{5} \right) \) This means that \( \sin \theta = \frac{3}{5} \). ### Step 2: Construct a right triangle In a right triangle, if \( \theta \) is one of the angles, the opposite side (perpendicular) can be taken as 3 and the hypotenuse as 5. ### Step 3: Find the length of the base Using the Pythagorean theorem: \[ h^2 = p^2 + b^2 \] where \( h = 5 \) (hypotenuse) and \( p = 3 \) (opposite side). We need to find the base \( b \): \[ 5^2 = 3^2 + b^2 \\ 25 = 9 + b^2 \\ b^2 = 25 - 9 = 16 \\ b = 4 \] ### Step 4: Calculate \( \tan \theta \) Now we can find \( \tan \theta \): \[ \tan \theta = \frac{\text{opposite}}{\text{base}} = \frac{3}{4} \] ### Step 5: Rewrite the expression Now we can rewrite the original expression: \[ \sin^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{7} \right) = \tan^{-1} \left( \frac{3}{4} \right) + \tan^{-1} \left( \frac{1}{7} \right) \] ### Step 6: Use the formula for the sum of arctangents Using the formula: \[ \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \] where \( a = \frac{3}{4} \) and \( b = \frac{1}{7} \): \[ \tan^{-1} \left( \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \cdot \frac{1}{7}} \right) \] ### Step 7: Calculate the numerator Calculate the numerator: \[ \frac{3}{4} + \frac{1}{7} = \frac{3 \cdot 7 + 1 \cdot 4}{4 \cdot 7} = \frac{21 + 4}{28} = \frac{25}{28} \] ### Step 8: Calculate the denominator Calculate the denominator: \[ 1 - \frac{3}{4} \cdot \frac{1}{7} = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] ### Step 9: Combine the results Now we have: \[ \tan^{-1} \left( \frac{\frac{25}{28}}{\frac{25}{28}} \right) = \tan^{-1}(1) \] ### Step 10: Final result Since \( \tan^{-1}(1) = \frac{\pi}{4} \): \[ \sin^{-1} \left( \frac{3}{5} \right) + \tan^{-1} \left( \frac{1}{7} \right) = \frac{\pi}{4} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

Prove the following: 2\ sin^(-1)(3/5)=tan^(-1)(24/7)

Prove that : 2 sin^(-1)( 3/5) = tan^(-1)( 24/7)

The value of tan[sin^(-1) (3/5)+tan^(-1) (2/3)] is

tan^(-1) (1/5) + tan^(-1) (1/7) + tan^(-1) (1/3) + tan^(-1) (1/8) = π/4

Prove that tan ^(-1)(1/5) + tan^(-1)(1/7) +tan^(-1)(1/3)+ tan ^(-1)(1/8) = pi/4

Prove that: ,,2sin^(-1)(3)/(5)=tan^(-1)(24)/(7)

Prove that tan^ (-1)( 1/3) +tan^(-1)( 1/5) + tan^(-1) (1/7 )+tan^(-1) (1/8) = pi/4

Prove that: sin^(-1)((8)/(17))+sin^(-1)((3)/(5))=tan^(-1)((77)/(6))

sin[cos^(-1)(3/5)+tan^(-1)2]=

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. cos^(-1)(15/17)+2 tan^(-1)(1/5)=

    Text Solution

    |

  2. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  3. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  4. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  5. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  6. If x + y + z = xyz and x, y, z gt 0, then find the value of tan^(-1) x...

    Text Solution

    |

  7. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  8. If x1,x2, x3, x4 are the roots of the equation x^4-x^3 sin2 beta+ x^2....

    Text Solution

    |

  9. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  10. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  11. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  12. The value of tan[1/2cos^(-1).sqrt5/3] is

    Text Solution

    |

  13. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  14. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  15. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  16. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-...

    Text Solution

    |

  17. If A=tan^-1((xsqrt3)/(2k-x)) and B=tan^-1((2x-k)/(ksqrt3)) then find t...

    Text Solution

    |

  18. If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x then x equals

    Text Solution

    |

  19. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  20. If -1/2 le x le 1/2 hence sin^(-1)(3x-4x^(3)) equals

    Text Solution

    |