Home
Class 12
MATHS
A solution of the equation tan^(-1)(1+...

A solution of the equation
`tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2)` is

A

x=1

B

x=-1

C

x=0

D

`x=pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2} \), we can use the property of inverse tangent functions. Here’s a step-by-step solution: ### Step 1: Use the property of inverse tangent Recall the identity: \[ \tan^{-1}(a) + \tan^{-1}(b) = \frac{\pi}{2} \quad \text{if } ab = 1 \] In our case, let \( a = 1+x \) and \( b = 1-x \). ### Step 2: Set up the equation We need to check if \( (1+x)(1-x) = 1 \): \[ (1+x)(1-x) = 1 - x^2 \] Set this equal to 1: \[ 1 - x^2 = 1 \] ### Step 3: Solve for \( x \) From the equation \( 1 - x^2 = 1 \), we simplify: \[ -x^2 = 0 \] This implies: \[ x^2 = 0 \] ### Step 4: Find the value of \( x \) Taking the square root of both sides gives: \[ x = 0 \] ### Conclusion Thus, the solution to the equation \( \tan^{-1}(1+x) + \tan^{-1}(1-x) = \frac{\pi}{2} \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|30 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    OBJECTIVE RD SHARMA|Exercise Section II - Assertion Reason Type|11 Videos
  • INTEGRALS

    OBJECTIVE RD SHARMA|Exercise Illustration|1 Videos
  • LIMITS

    OBJECTIVE RD SHARMA|Exercise Chapter Test|60 Videos

Similar Questions

Explore conceptually related problems

The number of solutions of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is 2(b)3 (c) 1(d)0

The number of solution of the equation tan^(-1) (1 + x) + tan^(-1) (1 -x) = (pi)/(2) is

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

tan^(-1)(x-1)+tan^(-1)(x+1)=(pi)/(4)

tan^(-1)(x/2)+tan^(-1)(x/3)=(pi)/(4)

Solution of tan ^(-1) (1 + x) + tan ^(-1) ( 1- x) = (pi)/(2) is:

An integral solution of the equation tan^(-1)x+tan^(-1)(1//y)=tan^(-1)3 is

OBJECTIVE RD SHARMA-INVERSE TRIGONOMETRIC FUNCTIONS -Exercise
  1. The value of cot[cos^(-1)(7/25)] is

    Text Solution

    |

  2. sin^(-1)(3/5)+tan^(-1)(1/7)=

    Text Solution

    |

  3. A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is

    Text Solution

    |

  4. If x^2+y^2+z^2=r^2,t h e ntan^(-1)((x y)/(z r))+tan^(-1)((y z)/(x r))+...

    Text Solution

    |

  5. If x + y + z = xyz and x, y, z gt 0, then find the value of tan^(-1) x...

    Text Solution

    |

  6. If xy +yz+zx=1 then tan^(-1)x+tan^(-1)y+tan^(-1)z=

    Text Solution

    |

  7. If x1,x2, x3, x4 are the roots of the equation x^4-x^3 sin2 beta+ x^2....

    Text Solution

    |

  8. The value of cos (2Cos^-1 0.8) is

    Text Solution

    |

  9. If 0 le x le 1 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  10. The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (...

    Text Solution

    |

  11. The value of tan[1/2cos^(-1).sqrt5/3] is

    Text Solution

    |

  12. If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then...

    Text Solution

    |

  13. The value of cot^(-1){(sqrt(1-sinx)+sqrt(1+sinx))/(sqrt(1-sinx) -sqr...

    Text Solution

    |

  14. The value of sin[cot^(-1){cos(tan^(-1) x)}] is

    Text Solution

    |

  15. If x >1 , then 2\ tan^(-1)x+sin^(-1)((2x)/(1+x^2)) is equal to 4tan^(-...

    Text Solution

    |

  16. If A=tan^-1((xsqrt3)/(2k-x)) and B=tan^-1((2x-k)/(ksqrt3)) then find t...

    Text Solution

    |

  17. If sin^(-1)x+sin^(-1)(1-x)=cos^(-1)x then x equals

    Text Solution

    |

  18. If -1 le x le 0 then cos^(-1)(2x^(2)-1) equals

    Text Solution

    |

  19. If -1/2 le x le 1/2 hence sin^(-1)(3x-4x^(3)) equals

    Text Solution

    |

  20. The value of sin^(-1)(sin 10) is

    Text Solution

    |